
27
th
Annual

Rowan University

Programming Contest

hosted by the

Computer Science Department

Friday, 26 April 2013

Contest Problem



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

1 Introduction

The game Battleship involves two players with ships arranged on a grid, taking turns attempting to
sink each other’s fleets. As most commonly played, each player has five ships: an Aircraft Carrier

of length 5 (abbreviated A), a Battleship of length 4 (B), a Destroyer (D) and a Submarine (S),
both length 3, and a PT Boat (P) of length 2. Each ship is placed horizontally or vertically on a
10 × 10 grid, without going off the side. A turn consists of naming a square, which the opponent
declares to be a hit or a miss. When a ship has been hit along its full length, it declared to have
been sunk, and it is identified.

This contest considers the logic of choosing the best shot. There are two situations to be
considered: when you are trying to find a ship, and when you have hit a ship but not yet sunk it.

1.1 No Damaged-But-Unsunk Ships

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

Consider the game in progress at right. The opponent’s Battle-
ship has been sunk, and the other four ships are being sought.

We need to find the square most likely to have a ship on it.
Those which already have shots (either hit or miss) get a value of
zero, as does E6, because no ship can be placed in a way where
it will cover E6.

Consider D7. There are two possible positions for P which
include D7: C7-D7 and D7-D8 (it may have one end on the square
and is either horizontal or vertical). Using the same reasoning,
there are two possible positions for both D and S which include
D7: B7-D7 and D7-D9. Possible placements for B are zero. There
is no location for A such that it covers D7, because it’s too long. That gives 6 ship placements
which include D7 (two each for the three vessels which fit).

Moving down and to the left, there are 17 possible placements that include C8. P could be at
any of: B8-C8, C8-D8, C7-C8, C8-C9. For D and S, possibilities include A8-C8, B8-D8, C6-C8,
C7-C9, C8-C10. For A, there are no horizontal possibilities, but it could be at any of: C4-C8,
C5-C9, C6-C10. (Again, B is not considered.)

Moving up that column, C4 is included in 4 placements for P (C3-C4, C4-C5, B4-C4, C4-D4),
6 each for D and S, (C2-C4, C3-C5, C4-C6, A4-C4, B4-D4, C4-E4), and 7 for A (C1-C5, C2-C6,
C3-C7, C4-C8, A4-E4, B4-F4, C4-G4), giving a total of 23.

Now consider G4: There are 4 placements for P which include that square; D and S each have
6 placements which include G4; A has 8 placements covering G4. G4 is therefore included in 24
possible ship placements.

In this situation, your program should print that the best move is G4, with a value of 24.

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

Now let us assume that the player has chosen G4, and that it was
a miss. That would give us the board position at right.

The number of theoretical ship placements which includes G4
is now zero.

The numbers for D7 and C8 remain as they were, 6 and 17,
respectively.

The number for C4 has gone down by one: P, D, and S are
as before, but A can no longer be placed at C4-G4, because G4
is no longer available. C4’s value is now 22.

1 2
34
56
78
9



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

Consider C3; it is included in 4 placements for P, 6 for each of S and D, and 6 for A. Its value
is also 22. The same is true of F3, H3, and H5.

In a case like this, any of C3, F3, H3, C4, and H5 is equally good. Presented with this board
layout, your program should print out all five positions and their values, in the order C3, F3, H3,
C4, and H5.

1.2 Damaged-But-Unsunk Ships

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

Consider the board at right. The opponent’s Battleship and Sub-
marine have been sunk, and there’s a hit at D2. It must be one of
either P, D, or A. (As B and S are sunk, they are not possibilities.)
The best choice now is a square around D2.

Consider D1 and D3. P can fit vertically and touch either
square, and D can fit vertically and touch both. A cannot fit
vertically in the space. So there are two ship placements which
include D1 (one each for P and D), and two which include D3.

Next consider C2. P can be on C2. D can be on C2 in two
different ways: it might cover B2-D2, or C2-E2. A can be on
C2 in three ways: A2-E2, B2-F2, C2-G2. So for square C2, the
total number of ship placements which include that square is 6. That makes C2, with 6 possible
placements, better than either D1 or D3, which each have only two.

But then consider E2. P can be on E2. D can be on E2 in two different ways: it might cover
C2-E2 or D2-F2. And A can be on E2 in 4 ways: A2-E2, B2-F2, C2-G2, D2-H2. The total number
of possible ship placements which include E2 is 7, making it the best choice.

In this situation, your program should report that the best move is E2 with a score of 7.

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

Suppose the player has moved to E2 and it is a hit, but the
ship was not sunk. We know that the ship must be either A or D,
because if it had been P it would have been sunk. It is possible,
but unlikely, that there are two different ships right next to each
other. We will assume that is not the case in a situation like this,
but be sure to see the next section where it might come up.

That leaves us with either C2 or F2. D can be on C2 in one
way (C2-E2), and it can be on F2 in one way (D2-F2). There are
three ways A can be on C2, and three ways it can be on F2.

In this case, your program should report that both C2 and F2
have a score of 4.

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

Alternatively, suppose E2 had been a miss? We know that the
ship must be either D or P, because A won’t fit in the spaces
which are left.

D1 and D3 have the same values as before: there are two ship
placements which include those squares, one each for D and P.

The value for C2 has dropped; there are no placements for A
which include C2; there’s still one for P, and there’s also only one
for D. (Those which included E2 are no longer valid.)
With this board position, your program should print that D1,
C2, and D3 have a value of 2.

123
456789



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

1.3 Multiple Damaged-But-Unsunk Ships

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

If multiple ships are next to each other, it’s possible to shoot
across them, and thus cause damage to multiple vessels without
sinking any of them.

In the position at right, there are no sunk ships. The player
got a hit on their third move at D6. Since there were more ways
for a ship to be a vertical than horizontal, the player chose D5
and then D4, which was a miss. Then the player chose D7, a hit,
and D8, a miss.

In this situation, each of the hits has to be considered inde-
pendently: there are four ship placements which include C5 (each
ship except A going horizontally from D5); there are 8 placements
which include C6; there are 5 which include E6; there are 11 which include C7; there are 12 which
include E7. So in this position, the best choice is E7.

A B C D E F G H I J

10
9
8
7
6
5
4
3
2
1

Suppose E7 is a hit, but no ship is sunk as a result.
There is the possibility that D7-E7 are any of the ships but P

(because it would be sunk), and also the possibility that one ship
goes left from D7 and another ship goes right (or down) from E7.

You should assume that any string of hits on unsunk ships
are a single ship, unless there is a miss at both ends. Further,
the longest string of hits should always be pursued first, because
sinking a ship gives information which can be used in calculations
about other hits.

In this situation, we have three strings of hits on three differ-
ent ships; as D7-E7 is the longest, the only shots your program
should consider are C7 and F7. For C7, there are three place-
ments for A, two for B, one each for D and S, and none for P

(remember we are assuming that D7 and E7 are hits on a single ship). The same applies to F7.
So your program should report that the best choice is a tie between C7 and F7, each with a value
of 7.

Your challenge for this contest is to write a program which reads in the information about ships
still in play and the moves already made on the board, and prints out the position(s) remaining
which are included in the greatest number of possible placements for all the remaining ships.

Notes:

A damaged-but-not-sunk ship always takes highest priority when choosing the next move.
If there are several damaged-but-not-sunk ships, and one has a longer series of hits than any

others, it takes priority.
If there are several damaged-but-not-sunk ships, and all have the same amount of damage, then

the spaces around each need to be considered.

If there are multiple squares with the same value, they should be listed in order by row, lowest row
first. If several are on the same row, they should be listed in order by column.

12
3 4

56
78
9



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

2 Input

2.1 Input Specification

For text input, your program should accept input in the following format:

1. An integer, D, where 1 ≤ D ≤ 50, which is the number of datasets in this file.

2. D data sets, each of which is in this format:

(a) One line with one integer, S, where 1 ≤ S ≤ 5, which is the number of ships still in play.

(b) One line with S letters, from the set {A, B, D, S, P}, indicating which ships are in play.
If there is more than one letter, they will be separated by a single space. There will
always be at least one letter.

(c) 10 lines, each with 10 integers, one of {0, 1, 2, 3}, laying out which squares have been
used. A ‘0’ is an empty space, a ‘1’ is miss, a ‘2’ is a hit, and a ‘3’ represents a sunken
ship.

2.2 Sample Input #1

Data in file Item # Meaning in plain English

2 1 this file has 2 data sets

4 2a Data Set 1 has 4 ships still in play

A D S P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 3 1 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0







































































2c the board’s current status

4 2a Data Set 2 has 4 ships still in play

A D S P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 3 1 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0







































































2c the board’s current status

(This input, which corresponds to the diagrams in §1.1, is on the website as sample1.txt.)

12345
6789



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

2.3 Sample Input #2

Data in file Item # Meaning in plain English

3 1 this file has 3 data sets

3 2a Data Set 1 has 3 ships still in play

A D P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 1 0 1 0 3 0 0 0

0 0 0 1 0 1 3 0 0 0

0 0 1 0 1 0 3 0 0 0

0 0 0 1 0 1 0 1 0 0

0 3 3 3 3 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































































2c the board’s current status

3 2a Data Set 2 has 3 ships still in play

A D P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 0 0

0 0 1 0 1 0 3 0 0 0

0 0 0 1 0 1 3 0 0 0

0 0 1 0 1 0 3 0 0 0

0 0 0 1 0 1 0 1 0 0

0 3 3 3 3 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































































2c the board’s current status

3 2a Data Set 3 has 3 ships still in play

A D P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 2 1 0 0 0 0 0

0 0 1 0 1 0 3 0 0 0

0 0 0 1 0 1 3 0 0 0

0 0 1 0 1 0 3 0 0 0

0 0 0 1 0 1 0 1 0 0

0 3 3 3 3 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































































2c the board’s current status

(This input, which corresponds to the diagrams in §1.2, is on the website as sample2.txt.)

12
34
5 6

78
9



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

2.4 Sample Input #3

Data in file Item # Meaning in plain English

2 1 this file has 2 data sets

5 2a Data Set 1 has 5 ships still in play

A B D S P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 2 1 0 0 0 0 0

0 0 0 2 0 1 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































































2c the board’s current status

5 2a Data Set 2 has 5 ships still in play

A B D S P 2b the ships being sought

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 2 1 0 0 0 0 0

0 0 0 2 0 1 0 0 0 0

0 0 0 2 2 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































































2c the board’s current status

(This input, which corresponds to the diagrams in §1.3, is on the website as sample3.txt.)

Notes:

The game board will always be 10 × 10, the ships will be represented by the letters ‘A’, ‘B’, ‘D’,
‘S’, and ‘P’, and their lengths will be, respectively, 5, 4, 3, 3, and 2.

There will be no case in which there are separate groups of hits in a grid. Any ‘2’, representing a
ship hit-but-not-sunk, will either be the only one in on the grid, or it will be next to another ‘2’.

You may choose to have your program read the input from the keyboard, or ask the user for a
filename and then read the file. Users of GUI-based programming environments may prefer to
use text boxes into which the values can be entered, and buttons to begin their calculation. Any
reasonable variation in the spirit of the problem is acceptable.

You need not do error-checking on the input. Each line will have exactly the number of items
described with no stray characters. There will be no blank lines.

1234567
89



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

3 Output

3.1 Output Specification

For each data set configuration, your program must generate output as follows:

1. The text ‘Analyzing D data sets’, where D is the number of data sets in the input.

2. For each data set:

(a) The text ‘Data Set S ’, where S is the number of the data set being reported on.

(b) The text ‘Best Move Value: V at LN ’, where L is the letter of the column for the
best move and N is the number of the row.

If there is more than one square with the same score, list them separated by commas,
in order first by row and then by column.

3.2 Sample Output 1

Analyzing 2 data set(s)

Data Set 1

Best Move Value: 24 at G4

Data Set 2

Best Move Value: 22 at C3, F3, H3, C4, H5

(This output corresponds to Sample Input 1 from page 5.)

3.3 Sample Output 2

Analyzing 3 data set(s)

Data Set 1

Best Move Value: 7 at E2

Data Set 2

Best Move Value: 4 at C2, F2

Data Set 3

Best Move Value: 2 at D1, C2, D3

(This output corresponds to Sample Input 2 from page 6.)

3.4 Sample Output 3

Analyzing 2 data set(s)

Data Set 1

Best Move Value: 12 at E7

Data Set 2

Best Move Value: 7 at C7, F7

(This output corresponds to Sample Input 3 from page 7.)

Your output does not have to duplicate the sample output as regards spacing or use of upper/lower
case. Your output should be neat, but need not exactly match the sample.

12
34
56
7 8

9



2
0
1
3
R
o
w
a
n
U
n
iv
e
r
s
it
y
P
r
o
g
r
a
m
m
in
g

C
o
n
t
e
s
t

4 Test Data

Run your program on this input and print the results. You must submit printed output to

earn full points. Your program will also be run on data known only to the judges.

4.1 Test Input #1

4

5

A B D S P

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

5

A B D S P

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

5

A B D S P

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2

A B

1 0 1 0 1 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0

0 1 3 0 0 0 1 0 0 0

1 0 3 1 0 0 0 1 0 0

1 0 3 0 1 1 0 0 1 0

0 1 0 0 1 3 3 0 0 1

0 0 1 0 0 1 1 0 1 0

1 0 0 1 0 0 0 1 3 0

0 0 0 0 1 0 0 0 3 0

0 0 0 0 0 1 0 0 3 1

4.2 Test Input #2

4

1

P

3 3 3 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0

0 1 0 1 1 0 0 1 0 1

1 0 1 0 3 0 1 0 1 0

0 1 0 0 3 1 1 0 0 0

0 0 1 0 3 0 3 3 3 3

0 1 1 0 3 0 1 0 0 0

3 3 3 0 3 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1

5

A B D S P

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

5

A B D S P

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 2 1 0 0 0 0

0 0 0 0 2 0 1 0 0 0

0 0 0 0 2 0 0 1 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

2

A B

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 3 0 0 0 0 0 0 0

1 0 3 1 0 0 0 0 0 0

0 0 3 0 1 1 0 0 0 0

0 0 0 0 1 3 3 0 0 0

0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 1 3 0

0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 3 1

All sample and test data sets are available at <http://elvis.rowan.edu/rupc/2013>

Id: rupc2013d.tex,v 1.8 2013/04/26 20:09:35 kilroy Exp kilroy

123456789


