U/S, sonography, or ultrasonography

BiomedGuy

Sonosite U/S Plus

- SonoSite, Inc.
- 21919 30th Drive SE
- Bothell, WA, USA
 98021-3904
- Telephone: 1-888-482-9449 or +1-425-951-1200
- Fax: +1-425-951-1201

Safety

- Electrical Safety The ECG cable emits electromagnetic interference when connected to the
- SonoSite system. It is not approved for use in-flight on aircraft.
- Do not submerge the transducer connector in solution.
 The cable is not liquid-tight beyond the transducer connector/cable interface.
- Do not expose the battery to temperatures over 60°C (140°F). Keep it away from fire and other heat sources.
 Do not leave the battery in direct sunlight

Clinical Applications

 Ultrasound testing (commonly called sonography or ultrasonography) is done with a device that transmits sound waves through body tissues, records the echoes as the sounds encounter structures within the body, and transforms the recordings into images that can be viewed on a television screen, recorded on videotape, and printed. Recent developments have greatly increased the variety and usefulness of diagnostic ultrasound procedures. However, some practitioners are using sonography as a money-making endeavor, claiming that it is useful for diagnosing muscle spasm or inflammation and for following the progress of patients treated for back pain.

Theory of Operation

The SonoSite ultrasound system has seven major functional groups: the transducer, the acquisition subsystem, the processing subsystem, the display subsystem, the control subsystem, the user interface subsystem, and the power subsystem.

Theory of Operation

- Transducer is a device that will convert some form of energy produced by physical stimulus to electrical signal.
- Ultrasonic transducers (also known as transceivers when they both send and receive) work on a principle similar to radar or sonar which evaluate attributes of a target by interpreting the echoes from radio or sound waves respectively.

Theory of Operation

 The system is powered by a rechargeable, sixcell, 11.1 V dc, 3.0 amp-hours, lithium-ion battery. A fully-charged battery has a run time of 1.5 to 4 hours, depending upon operating conditions.

PM'd

- Produce clear Phantom Images of probe measuring respective markings for accuracy
- Determine any existing problems or issues with system
- Check error logs, clear logs, run Diagnostic tests, evaluate errors
- Inspect system controls, power cord and cables for cracks, cuts, wear
- Inspect probes for damage or wear
- Clean transducers
- Check/replace backup battery
- Clean all external surfaces
- Clean all filters
- Check system and power supply fans
- Clean CRT and verify performance
- Clean and inspect keyboard, trackball, and electronics
- Perform keyboard/control panel tests, check lamps
- Verify complete system operation
- Clean trackball

Phantom

- CIRS Model 040GSE
 Multi-Purpose Multi Tissue Ultrasound
 Phantom
- allows for evaluation of transducers that range from 2 MHz - 15 MHz

Phantom

SPEED OF SOUND:

SCANNING WELL:

Saran-based laminate

Number of targets: 5

Depth range: 1 to 5 mm

NEAR FIELD GROUP:

Material: Nylon monofilament

Distance between Targets: 1 mm

SCANNING MEMBRANE:

1540 m/s ± 10 m/s

1 cm deep

HORIZONTAL AND VERTICAL GROUPS:

Material: Nylon monofilament Wire diameter: 100 microns

VERTICAL GROUP:

Number of targets: 15 Wire diameter: 100 microns Depth range: 1 to 16 cm Spacing: 10 mm

HORIZONTAL GROUP

Number of groups: 2 Wire diameter: 100 microns Depth range: 4 and 9 cm Number of targets: 4 & 7 respectively Spacing: 10 & 20 mm respectively

COMBINED AXIAL-LATERAL RESOLUTION GROUPS:

Number of groups: 2 Wire diameter: 80 microns Depth range: 3, & 6.5 cm Axial Intervals; 4, 3, 2, 1, 0.5 & 0.25 mm

Depth range: 10.5 cm

Lateral Intervals: 4, 3, 2, 1, & 0.5 mm

CYSTIC MASSES: Number of targets: 12

Number of groups: 1

Wire diameter: 80 microns

Diameter of targets: 1.33, 2.00, 2.99, 4.47, 6.69 & 10.00 mm Depth of Targets: 1.5, 4.5, 7.0, 10.0, 13.0, 16.0 cm

Attenuation: 0.5 dB/cm-MHz ± 0.1 Speed: 1540 m/s ± 10 m/s Contrast: Anechoic, Cyst-like

GRAY SCALE TARGETS:

Number of targets: 6 Diameter of targets: 8 & 10 mm Depth of targets: 3 & 11.5 cm Attenuation: 0.5 dB/cm-MHz ± 0.1 Contrast: -9, -6, -3, +3, +6 & <15 dB

ELASTICITY TARGETS:

Number of targets: 3 Diameter of targets: 6 & 8 mm Depth of targets: 1.5 & 5 cm Attenuation: 0.5 dB/cm-MHz Elasticity: 10, 40 & 60 kPa

Performance Measurements

- Performance
 Measurements
 - Horizontal Distance
 - Vertical Distance
 - Depth of Penetration
 - Image Uniformity
 - Axial Resolution
 - Lateral Resolution

Horizontal Distance Measure the distance,
 center to center, of two
 pins that are 4-10 cm.
 apart horizontally.

Vertical Distance - Measure the distance, center to center, of two pins that are 4-10 cm. apart vertically.

 Penetration - Measure from the center of the deepest vertical position where the scatter echoes start to break up and definition is lost.

Image Quality Verification Test – ensure there
is a clear image and text is readable. Verify
external monitor is operational.

Dropout –defective PCB

References

- http://en.wikipedia.org/wiki/Ultrasound
- http://www.hc-sc.gc.ca/ewhsemt/pubs/radiation/safety-code 24securite/health-sante-eng.php
- http://www.aium.org/publications/jum/about
 Jum.aspx
- http://www.aium.org/