
This work is licensed under a Creative
Commons Attribution 4.0 International

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/

Credits
• Designed by Christophe Moustier
• U. Enzler (most texts)
• Back cards picture:

https://pixabay.com/fr/photos/escalier-
spirale-l-architecture-600468/

• Icons: Freepik & Kiranshastry
(https://www.flaticon.com)

Disclaimer
• The CC4.0 does not apply to the materials

referred to by the links
• The Manifesto for Software Craftsmanship

may be freely copied in any form, but only
in its entirety

Licensing

http://creativecommons.org/licenses/by/4.0/
https://pixabay.com/fr/photos/escalier-spirale-l-architecture-600468/
https://www.flaticon.com/

This card set will renew your Dev
Experience in a sustainable way.

To find more information on
this card set, you can reach
https://fan-de-
test.fandom.com/fr/wiki/Happy_Fa
mily_for_Software_Craftsmanship.
Out there some extra games and
usages will be proposed,
why not yours? ☺

To carry on discovering Clean
Coding with Software Craftsmanship
practices, you can also reach some
books presented in the “Reference”
card but DON’T FORGET
PRACTICING with other craftsmen
and organize coding dojos on a
regular basis!

Software Craftsmanship

https://fan-de-test.fandom.com/fr/wiki/Happy_Family_for_Software_Craftsmanship

References
• Clean Code by Robert Martin
• McBreen's Software Craftsmanship
• The Pragmatic Programmer series
• The Craftsman by Richard Sennett
• Apprenticeship Patterns by Dave

Hoover
• Mastery by George Leonard
• The Dunning-Kruger effect
• The Creative Habit by Twyla Tharp
• The Wikipedia page on Software

Craftsmanship
• https://sourcemaking.com
• https://tinyurl.com/SC-cheat-list

You also should extend your quality
knowledge through testing materials
such as http://tinyurl.com/testagile-eni/
or https://tinyurl.com/testagile-safe-less-
eni

Software Craftsmanship

https://sourcemaking.com/
https://tinyurl.com/SC-cheat-list
http://tinyurl.com/testagile-eni/
https://tinyurl.com/testagile-safe-less-eni

Why?
Over time, technical debt reflects the
implied cost of additional rework caused
by choosing an easy solution now
instead of using a better approach that
would take longer.
Technical debt can be compared to
monetary debt. If technical debt is not
repaid, it can accumulate 'interest',
making it harder to implement changes
later on. Unaddressed technical debt
increases software entropy.

Software Craftsmanship intends to
control inevitable entropy growth.

Software Craftsmanship

Manifesto
As aspiring Software Craftsmen we are
raising the bar of professional software
development by practicing it and helping
others learn the craft. Through this work
we have come to value:

• Not only working software, but

also well-crafted software
• Not only responding to change, but

also steadily adding value
• Not only individuals and interactions,

but also a community of
professionals

• Not only customer collaboration, but

also productive partnerships

That is, in pursuit of the items on the left
we have found the items on the right to
be indispensable.

http://manifesto.softwarecraftsmanship.org

Software Craftsmanship

http://manifesto.softwarecraftsmanship.org/

Happy Families (for 2 to 5 players)
The deck is composed of 5 families of 8
practices (5 relatives+3 foes).
The goal of each player is to collect the
most completed families, incl. foes.
Shuffle the cards and distribute 8 to each
player.
The dealer starts by asking another
player for a card needed to complete a
family. If the other player has the card he
must give it to you. You may continue
asking for cards until you make a
mistake.
When a mistake occurs, the asker picks a
card from the undistributed ones then
the player who was asked for his card
takes his turn to request cards.
When a player gathers a full family, he
must put the 8 cards face down on the
table in front of him. These cards can no
longer be requested.
The games stop when all families are
completed.

USAGE #1

Practices evaluation (collaborative)
Prepare 5 columns on a table named
“We have” / “Let’s work on it” / “Future”
/ “Not applicable here” / “What is this?”.
Gather the team and evaluate together
the appropriate column for this practice.
When using “Not applicable here”,
rationale should also be provided.
Let them share the situation with the
Product Owner about their concerns and
plans.

Tip#1: Don’t take too many card, 15
cards for a 15 minutes events works well.

Tip#2: Re-evaluate on a regular basis (say
in retrospective) to monitor the
progress.

Tip#3: Developers may assign a 0-5 score
on a given card to refine the “We have”
situation accuracy as follow: 0-Never / 1-
Sometimes / 2-Always / 3-Documented /
4-Measured / 5-Optimizing

USAGE #2

CRAFTSMANSHIP
POWER CARD

Define a use in your own
gameplay as a coding standard

Two classes, components or modules are
coupled when at least one of them uses the
other. The less these items know about each
other, the looser they are coupled. A
component that is only loosely coupled to its
environment can be more easily changed or
replaced than a strongly coupled component.

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

1 Loose Coupling

Cohesion is the degree to which elements of a
whole belong together. Methods and fields in a
single class and classes of a component should
have high cohesion. High cohesion in classes
and components results in simpler, more easily
understandable code structure and design.

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

2 High Cohesion

Choose names that reflect the level of
abstraction of the class or method you are
working in.

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

3
Name matches

Level of Abstraction

Break your system down into components that
are of a size you can grasp within your mind so
that you can predict consequences of changes
easily
(dependencies, control flow, …).

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

4 Mind-sized Components

Enforce design decisions with structure over
convention. Naming conventions are good, but
they are inferior to structures that force
compliance.

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

5 Structure over convention

An artificial coupling is a coupling which is only
there for technical reasons and should not be
coupled
Example : Time depending on Watch (Time
should be meaningful without a Watch)

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

6 Artificial coupling

Prevent configuration just for the sake of it – or
because nobody can decide how it should be.
Otherwise, this will result in overly complex,
unstable systems.

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

7 Over configurability

Something put in the wrong place.
Maybe the architecture is not “SOLID” and the
Principle of “Least Astonishment” may be also

violated.

Relatives:
• Loose Coupling
• High Cohesion
• Name matches Level of Abstraction
• Mind-sized Components
• Structure over convention

Foes:
• Artificial coupling
• Over configurability
• Misplaced responsibility

DESIGN

8 Misplaced responsibility

Use automated Acceptance Test Driven
Development for regression testing and
executable specifications.
ATDD should be defined in Sprint Refinement
e.g. within a “3 Amigos” session especially on
tricky US.

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Foes:
• Excessive Mock usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

1 Automated ATDD

A combinatorial method of software testing
that, for each pair of input parameters to a
system (typically, a software algorithm), tests all
possible discrete combinations of those
parameters.

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Foes:
• Excessive Mock usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

2 Pairwise Testing

Start developing Unit Tests with tiny little steps.
Add only a little code in test before writing the
required production code. Then repeat. Add
only one Assert per step.

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Foes:
• Excessive Mock usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

3 TDD with tiny steps

Automated unit tests must be
• Fast: in order to be executed often
• Isolated: No dependency between tests.
• Repeatable: No assumed initial state,

nothing left behind
• Self-Validating: No interpretation or

intervention.
• Timely: Tests are written at the right time

(TDD, DDT, Plain old Unit Tests)

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Foes:
• Excessive Mock usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

4 FIRST

This happens whenever a case was not
addressed in a unit test, then you should write
a unit test that reproduces the defect – Fix code
– Test will succeed – Defect will never return

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Foes:
• Excessive Mock usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

5 Defect Driven Testing - DDT

When unit testing, dependencies must be faked
to isolate behaviors. If your test needs a lot of
testDoubles (mocks, stubs, fakes,...), then
consider splitting the testee into several classes
or provide an additional abstraction between
your testee and its dependencies.

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Excessive Mock usage

Foes:
• Excessive Mock usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

6

Always unit test boundaries. Do not assume
behavior. Parameters may have boundaries
from business (require them from the Product
Owner) values and also from code (e.g. 0-255
for a byte). Intervals between boundaries
should be tested on valid AND invalid intervals.
Look for “Pairwise testing” when facing too
many combinations.

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Incorrect Behavior
at Boundaries

Foes:
• Excessive Fake usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

7

Use code coverage to find missing tests but
don’t use it as a driving tool. Otherwise, the
result could be tests that increase code
coverage but not certainty. Code coverage is
much weaker than Branch cov., Decision cov.
(see Pairwise Testing) or Path cov. (that late one
is usually impossible). Coverture should be
adapted with failure impacts severity.

Relatives:
• Automated ATDD
• Pairwise Testing
• TDD with tiny steps
• FIRST
• Defect Driven Testing - DDT

Using Code Coverage
as a Goal

Foes:
• Excessive Fake usage
• Incorrect Behavior at Boundaries
• Using Code Coverage as a Goal

TESTING

8

Change your system in small steps, from a
running state to a running state. Isolation of the
area to refactor is key, so prepare fakes, TDDs
and possible new interfaces at refactoring
boundaries before reengineering.

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

Always have
a Running System

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

1

1 - You are not allowed to write any production
code unless it is to make a failing unit test pass.
2 - You are not allowed to write any more of a
unit test than is sufficient to fail; and
compilation failures are failures.
3 - You are not allowed to write any more
production code than is sufficient to pass the
one failing unit test.

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

The Three Laws of TDD

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

2

Move from one representation to another by
temporary duplication of data structures.
Consider small and frequent refactoring rather
than wide range refactoring area for data
migration could also be tremendous!

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

Migrate Data

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

3

Only refactor in small steps with working code
in-between so that you can keep all loose ends
in your head. Otherwise, defects sneak in and
data migration becomes tremendous.

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

Small Refactoring's

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

4

We normally build software by adding,
extending or changing features.
However, removing elements is important so
that the overall design can be kept as simple as
possible. When a block gets too complicated, it
has to be
removed and replaced with one or more
simpler blocks.

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

It is Easy to Remove

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

5

Code contains duplication or design duplicates
(doing the same thing in a different way).
Making a change to a duplicated piece of code
is more expensive and more error-prone.
Eliminate duplication. Violation of the “Don’t
repeat yourself” (DRY) principle

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

Duplication

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

6

Software code (unit tests included) is difficult to
change. A small change causes a cascade of
subsequent changes.

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

Rigidity

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

7

The design contains elements that are currently
not useful. The added complexity makes the
code harder to comprehend. Therefore,
extending and changing the code results in
higher effort than necessary.

Relatives:
• Always have a Running System
• The Three Laws of TDD
• Migrate Data
• Small Refactoring's
• It is Easy to Remove

Needless Complexity

Foes:
• Duplication
• Rigidity
• Needless Complexity

REFACTORING

8

The easiest approach I’ve yet found for finding
good names is to progress along a series of
regular steps. The steps a name goes through
are:
1- Missing  2- Nonsense  3- Honest  4-
Honest and Complete  5- Does the Right
Thing  6- Intent  7- Domain Abstraction

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Naming is a process

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

1

• Release Reuse Equivalency Principle (RREP):
The granule of reuse is the granule of
release.

• Common Reuse Principle (CRP): Classes
that are used together are packaged
together.

• Common Closure Principle (CCP): Classes
that change together are packaged
together.

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Package Cohesion

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

2

It is a simple approach to Domain Driver Design
(DDD) tactical patterns. The role of the tactical
patterns in DDD is to manage complexity and
ensure clarity of behavior within the domain
model.

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Do stuff or know others,
but not both

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

3

Code smell, also known as bad smell, in
computer programming code, refers to any
symptom in the source code of a program that
possibly indicates a deeper problem.
A Code smell deserves a refactoring to remove
it. Each code smell has a subset of applicable
refactoring techniques

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Knowing code smells

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

4

Exceptions should be thrown as early as
possible after detecting an exceptional case
(e.g. undefined behavior or invalid values). This
helps to pinpoint the exact location of the
problem by looking at the stack trace of the
exception.
An Error Handler service could also be triggered
to track the exception with value and calling
object or service.

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Fail Fast

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

5

Replace Magic Numbers and Strings with
named constants to give them a meaningful
name when meaning cannot be derived from
the value itself.

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Magic Numbers / Strings

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

6

The software is difficult to change. A small
change causes a cascade of subsequent
changes.

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Rigidity

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

7

A data class refers to a class that contains only
fields and crude methods for accessing them
(getters and setters). These are simply
containers for data used by other classes. These
classes do not contain any additional
functionality and cannot independently operate
on the data that they own.

Relatives:
• Naming is a process
• Package Cohesion
• Do stuff or know others, but not both
• Knowing code smells
• Fail Fast

Data Class

Foes:
• Magic Numbers / Strings
• Rigidity
• Data Class

CODING

8

• 1-I will not produce harmful code.
• 2-The code that I produce will always be my

best work.
• 3-I will not knowingly allow code that is

defective […]
This oath includes 9 items - Read the whole
oath at https://tinyurl.com/programmers-oath

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Uncle Bob’s Programmer’s
Oath

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

1

MINDSET

Simpler is always better. Reduce complexity as
much as possible.
This often goes along with YAGNI (You Ain’t
Gonna Need It).

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Keep it Simple, Stupid (KISS)

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

2

MINDSET

«There are 2 things a boy scout leaves
behind him: nothing and “thank you” »

It means leaving the campground cleaner than
you found it; it does not need to be perfect but
at least the cumulated efforts, even the
smallest, will make the place nicer!

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Boy Scout Rule

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

3

MINDSET

As a “Knowledge Worker”, continuing
innovation is part of your work. This is your
responsibility.
You also need to develop a proper environment
(attending dojos, reading books, …) and unlock
your intrinsic motivation.

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Continuous Learning Process

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

4

MINDSET

Issues found today come from solutions found
yesterday so don’t blame bad solutions.
Fix what needs to be fixed and try to improve
legacy as much as possible.
Good Samaritan and comprehension provide
the proper collaborative environment for a
Team.

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Humility

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

5

MINDSET

Have a reason for the way you structure your
code, and make sure that reason is
communicated by the structure of the code. If a
structure appears arbitrary, others will feel
empowered to change it.

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Being Arbitrary

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

6

MINDSET

If a component of a system should behave in a
way that most users will expect it to behave;
the behavior and structure should not astonish
or surprise users.

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Violate the principle of Least
Astonishment

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

MINDSET

7

If you do something a certain way, do all similar
things in the same way: same variable name for
same concepts, same naming pattern for
corresponding concepts.

Relatives:
• Uncle Bob’s Programmer’s Oath
• Keep it Simple, Stupid (KISS)
• Boy Scout Rule
• Continuous Learning Process
• Humility

Inconsistency

Foes:
• Being Arbitrary
• Violate the principle of Least Astonishment
• Inconsistency

8

MINDSET

A class should have one, and only one, reason
to change.
Associated smells: Large Class (more than 30
methods) / Duplicated Code / "Shotgun
surgery" to change application / Divergent
Change (the class changes more frequently
than other classes in the application)

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Single responsibility
principle (SRP)

Foes:
• Shotgun surgery
• Abrupt API Change
• Feature Envy

SOLID

1

Software entities should be open for extension,
but closed for modification.
You should be able to extend a classes behavior,
without modifying it.
You should not alter an existing API behavior
but rather extending the component with new
APIs.
The class needs to change for more than one
reason.

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Open–closed principle (OCP)

Foes:
• Shotgun surgery
• Abrupt API Change
• Feature Envy

SOLID

2

Functions that use references to base classes
must be able to use objects of derived classes
without knowing it.
Associated smells: explicit casting / You are not
using the base class without knowledge of the
derived classes / Preconditions cannot be
strengthened in a subtype / Postconditions
cannot be weakened in a subtype.

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Liskov substitution principle
(LSP)

Foes:
• Shotgun surgery
• Abrupt API Change
• Feature Envy

SOLID

3

Many client specific interfaces are better than
one general purpose interface. Some code that
violates this principle will be easy to identify
due to having interfaces with a lot of methods
on. This principle compliments SRP, as you may
see that an interface with many methods is
actually responsible for more than one area of
functionality.

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Interface segregation
principle (ISP)

Foes:
• Shotgun surgery
• Abrupt shared API Change
• Feature Envy

SOLID

4

Depend on abstractions (module or duck type),
not on concretions (class).

Do not depend on things that change less often
than you do.

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Dependency inversion
principle (DIP)

Foes:
• Shotgun surgery
• Abrupt shared API Change
• Feature Envy

SOLID

5

Making any modifications requires that you
make many small changes to many different
classes.

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Shotgun surgery

Foes:
• Shotgun surgery
• Abrupt shared API Change
• Feature Envy

SOLID

6

Changing the behavior of an API or its signature
without a decommissioning policy (such as
deprecation notice with some delay or use
measurement before being removed) will
generate a lot of debugging efforts waste of
time on the client side

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Abrupt API Change

Foes:
• Shotgun surgery
• Abrupt API Change
• Feature Envy

SOLID

7

A method accesses the data of another object
more than its own data. This smell may occur
after fields are moved to a "data class". If this is
the case, you may want to move the operations
on data to this class as well.

Relatives:
• Single responsibility principle (SRP)
• Open–closed principle (OCP)
• Liskov’s substitution principle (LSP)
• Interface segregation principle (ISP)
• Dependency inversion principle (DIP)

Feature Envy

Foes:
• Shotgun surgery
• Abrupt API Change
• Feature Envy

SOLID

8

Fold here

Glue only here

Fold here Cut here

1 2 3

Note: the printing will
provide 2 cards per sheet

