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Foreword

In basic science, fundamental discoveries are made by intense concentration on a single
issue, and by rigorous control of all extraneous variation. By contrast, in practical engi-
neering new products are designed and new markets opened up by successful integration
of the discoveries of many diverse branches of basic science. This requires careful speci-
fication of interfaces, which should be tolerant to variation in environmental parameters,
and cost-effective for a range of applications.

In a new scientific discipline, or one which has expanded too fast for its own good, it is a
slow process to establish a consensus on what is the appropriate subdivision of the subject
into its branches, and what are the appropriate methods of research within each branch.
Exploration of the structure of the discipline and elucidation of the interfaces between
its branches are necessary conditions of progress; and, of course, mathematical concepts,
calculations and proofs play the same central role as they have in all well-established
scientific disciplines.

In engineering methodology, two directions of interfacing can be distinguished:

1. Horizontal integration between components of a complex product, perhaps imple-
mented in differing materials or technologies;

2. Vertical integration between levels of abstraction in the design process, ranging from
requirements through specifications, designs, and ultimate implementation.

The scientific study of both kinds of interface can help not only to clarify the subject
matter and structure of a scientific discipline; it can also help the engineer to improve
product reliability and reduce time to market by avoiding the most insidious and most
expensive kinds of error, those that lurk in the interfaces between components and between
phases of the design. The benefits are even greater if the engineering calculations can be
carried out or at least checked with the assistance of a computer.

That is the philosophical background to the safemos project, whose results are reported
in this book, and of several related projects in other leading centres of research. They
concentrate on what are recognized as issues central to computing science, including
requirements, specifications, designs, programs, compilers, machines architectures, and
logic design of hardware. Many of these interfaces are well understood; and here the
project has aimed at an increase in rigour of formalization, preparing the ground for
reliable mechanical support.

The safemos project concentrates on the most urgent problems of ensuring the re-
liability of designs and programs for embedded systems working in real-time; it is not

XVil



XVviii FOREWORD

aimed at any particular product, but it has clarified the principles of reliable design and
implementation.

These principles, we hope, will be just as effective in the timely and reliable implemen-
tation of more general systems, where safety is not such a critical issue. But above all,
the principles enlarge our basic scientific understanding of computing science, in a way
that illuminates the structure of the whole subject and its methods of research.

C.A.R. Hoare



Preface

As the complexity of embedded computer-controlled systems increases, the present indus-
trial practice for their development gives cause for concern, especially for safety-critical
applications where human lives are at stake. The use of software in such systems has
increased enormously in the last decade. Formal methods, based on firm mathematical
foundations, provide one means to help with reducing the risk of introducing errors dur-
ing specification and development. There is currently much interest in both academic
and industrial circles concerning the issues involved, but the techniques still need further
investigation and promulgation to make their widespread use a reality.

This book presents some results of research into techniques to aid the formal verification
of mixed hardware/software systems. Aspects of system specification and verification from
requirements down to the underlying hardware are addressed, with particular regard to
real-time issues. The work presented is largely based around the Occam programming
language and Transputer microprocessor paradigm. The HOL theorem prover, based on
higher order logic, has mainly been used in the application of machine-checked proofs.

The book describes research work undertaken on the collaborative UK DTI/SERC-
funded Information Engineering Directorate safemos project. The partners were Inmos
Ltd, Cambridge SRI, the Oxford University Computing Laboratory and the University
of Cambridge Computer Laboratory, who investigated the problems of formally verifying
embedded systems. The most important results of the project are presented in the form of
a series of interrelated chapters by project members and associated personnel. In addition,
overviews of two other ventures with similar objectives are included as appendices.

The material in this book is intended for computing science researchers and advanced
industrial practitioners interested in the application of formal methods to real-time safety-
critical systems at all levels of abstraction from requirements to hardware. In addition,
Chapters 1 and 11 contain material of a more general nature which may be of interest
to managers in charge of projects applying formal methods, especially for safety-critical
systems, and others who are considering their use.

In Part I of the book, Chapter 1 provides an introduction to the setting to which the
rest of the book is intended to contribute, with particular regard to safety-critical systems,
where correctness is of paramount importance. Standards are likely to provide a major
motivating force for the use of formal methods in the development of such systems, and
a selection of these are surveyed. Chapter 2 continues by giving an overview of the work
undertaken on the safemos project, with a little more detail devoted to areas not covered
in subsequent chapters.

Part II provides an introduction to the main theorem proving tool used on the safemos

X1X



XX PREFACE

project (HOL) in Chapter 3, together with an example of how it may be used in modelling
real-time systems in Chapter 4. Chapter 3 is included to give the reader not acquainted
with the HOL mechanical theorem proving system a knowledge of its capabilities that will
aid the reading of the rest of the book from Chapter 4 to 9.

Chapter 4 considers the mechanization of timed transitions systems (TTS) in HOL to al-
low modelling and reasoning about real-time systems. A traffic light controller example is
used to present the principles involved. A mechanical proof environment could be further
developed along the principles presented here to allow the specification and verification
of real-time systems at a rather higher level of abstraction than considered in Part III.
Embedding of requirements and design specifications, and techniques for demonstrating
that a design meets its requirements using TTS proof rules are discussed.

Part III presents the use of HOL for developing and compiling software. Chapter 5
presents a complete self-contained case study of the verification of a small example pro-
gram. The technique described is intended to be applied when the highest level of integrity
is required. The timing aspects are modelled at the level of the machine clock cycle for the
compiled object code. This is the only way to ensure completely accurate reasoning about
the timing properties of the program. Of course this limits the size of code that can be
handled tractably, but it is envisaged that small sections of safety-critical code could be
verified in this manner to give the highest degree of confidence. The process is mechanized
in HOL to help avoid human error and make it usable for non-trivial examples.

In the past, safety-critical software has often been developed using assembler programs
due to the unreliability of high-level languages, and their unpredictable timing properties.
On the safemos project, a small real-time Occam-like language and its compilation to a
Transputer-like instruction set have been developed and mechanized in HOL. The language
and its interval temporal logic semantics are presented in Chapter 6. Its compilation
and the verification of this process are presented in Chapter 7. It is intended that the
development of more reliable compilation for real-time programming along these lines
will enable higher-level programming techniques to be used for safety-critical systems
with more confidence in the future.

Correct software must be run on correct hardware for overall system correctness. There-
fore the formal development of both aspects of a software/hardware system is important.
Part IV presents aspects of verifying hardware designs. Chapter 8 discusses techniques
to design microprocessors in a generic manner. Chapter 9 presents the development of
a simple (but realistic) Transputer-like processor. The verified hardware described could
be used to run programs compiled by the technique previously presented in Chapter 7.

An interesting recent development is the possibility of compiling hardware in a similar
manner to that which software is routinely compiled today. Chapter 10 gives a more
speculative presentation of how hardware for safety-critical systems could be developed
in the future. These techniques are still an active area of research at an early stage of de-
velopment and there is potential for considerable progress. For example, there is growing
interest in the area of hardware/software co-design, which typically involves the interven-
tion of a design engineer to determine suitable tradeoffs between the use of software and
hardware.

Finally in Part V, aspects of technology transfer from formal methods academic research
to industrial application are addressed. For formal methods to be accepted, their use
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must be integrated into current best industrial practice. It is too risky and expensive to
completely replace existing methods. Chapter 11 discusses some of the issues involved
and considers the future prospects for methods such as those investigated by the safemos
project.

Two appendices present related work with similar aims to safemos, although using
different techniques. At Computational Logic, Inc. (CLI) in the US, the verification of
a number of related software and hardware levels has been undertaken using the Boyer-
Moore theorem prover. Appendix A presents this inspiring example, and also some of their
more recent work. In Europe, the collaborative ESPRIT ProCoS project has investigated
formal techniques from requirements down to machine code and how these relate to each
other. Appendix B gives an overview of the achievements of the first phase of this research
project. These efforts are still ongoing and further progress and results are expected.

A large bibliography is included at the end of the book for those interested in particular
areas of the safemos project, and related work by other researchers in the field of soft-
ware/hardware system verification. A number of relevant standards and other publicly
available documents are also included.

J.P. Bowen
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