TOWARDS VERIFIED SYSTEMS

EDITED BY
Jonathan Bowen

TOWARDS VERIFIED SYSTEMS

EDITED BY
Jonathan Bowen

© . 7mMmosS

This page deliberately left blank for publisher’s use

i

This page deliberately left blank for publisher’s use

This page deliberately left blank for publisher’s use

i

v

This page deliberately left blank for publisher’s use

Contents

Foreword x Vil
Preface Xix
Contact Addresses xxiil
I Introduction 1
1 Safety-Critical Systems and Formal Methods 3
1.1 A Brief Historical Perspective 3
1.2 Safety-critical Computer Systems 5
1.2.1 Dependable computer systems L 6

1.2.2 Formal methods 7

1.2.3 The cost of software safety 9

1.3 Industrial-scale Examplesof Use 11
1.3.1 Aviation 12

1.3.2 Railway systemso 13

1.3.3 Nuclear power plants 0oL 13

1.3.4 Medical systemso 14

1.3.5 Ammunition control Lo 16

1.3.6 Embedded microprocessorso L 17

1.4 Areas of Application of Formal Methods 18
1.4.1 Requirements capture 0oL 19

1.4.2 Design oL e 19

1.4.3 Compilation 20

1.4.4 Programmable hardware 0L 21

1.4.5 Documentation L0 o 21

1.4.6 Human-computer interface 21

1.4.7 Object-oriented methods L. 22

1.4.8 Artificial intelligence Lo Lo 22

1.4.9 Staticanalysiso o 22

1.5 Safety Standards 22
1.5.1 Formal methods in standards 23

1.5.2 Education, certification and legislation 27

1.6 Discussiono e 29

vi

1.6.1 Formal methods research
1.6.2 Formal methods technology
1.6.3 Education and accreditation
1.6.4 Standardso
2 Overview of the Project
2.1 The SAFEMOS Project
2.1.1 The SAFEMOS tower
2.2 System Modelling o oo
2.2.1 Timed transition systems.
2.3 Software Development and Compilation
2.3.1 State transition assertions
2.3.2 A real-time programming language
2.3.3 Program compilation 0oL
2.4 Hardware Design and Compilation
2.4.1 Microprocessor design methods
2.4.2 Hardware compilation
2.5 Other SAFEMOS Project Work
2.5.1 Symbolic execution
2.5.2 Assembler verification00 L
2.5.3 Machine semantics using Z L.
2.6 Related Work oo
2.7 Conclusion Lo

IT Tools and Models

3 The HOL Logic and System

3.1 Introduction
3.2 The HOL Logic,
321 Types . . o oo
322 Terms
3.2.3 Standard notions
3.2.4 Sequents
3.2.5 Semantics
3.2.6 Deductive systems L.
3.2.7 Theories
3.2.8 Built-in theories and notations
3.2.9 Consistencyo
3.2.10 Extensions of theories
3.3 The HOL System
3.3.1 The history of HOL

3.3.2 Overview of the theorem-proving infrastructure

3.3.3 Getting and using HOL

4 Timed Transition Systems

CONTENTS

CONTENTS

4.1
4.2

4.3

4.4

4.5

4.6

4.7

Introduction to TTSs and HOL
Example: A Traffic Light Controller
4.2.1 System descriptiono
4.2.2 System requirementso
A Real-Time Temporal Logic
4.3.1 Variables, expressions and equality
4.3.2 Boolean operators oL oo
4.3.3 Next o o
4.3.4 Previouso e
4.3.5 Eventually
4.3.6 Alwayso
4.3.7 Unless oo o
4.3.8 Exampleo
Timed Transition Systemso Lo
4.4.1 Timed transitions o
4.4.2 Computations
4.4.3 Requirements of computationso
Timed Transition Diagrams
4.5.1 TTD representation L oo
4.5.2 Semanticsof TTDs
453 Exampleo
Verificationo
4.6.1 Proof rules.
4.6.2 Singlesteprules.o oo
463 TTDrules o
4.6.4 Anexampleproof
4.6.5 Otherexamples
Discussion Lo e

IIT Software

5 State Transition Assertions: A Case Study

5.1
5.2

5.3
5.4
3.5

5.6
5.7
5.8

Introduction L Lo
An Example: Mult
5.2.1 Overview
5.2.2 Informal specification of Mult
5.2.3 MultProg: an implementation of Mult
A More Detailed Specification of Mult
Determining a Machine from a Program
State Transition Assertions L L
5.5.1 Holding states
Formal Specification of Mult L.
Correctness of MultProg
Generating Atomic STAso Lo

Vil

71
73
73
75
75
77
77
77
77
77
77
78
78
78
78
79
80
80
80
81
82
83
83
84
85
87
89
90

91

viii

5.9 Laws for Combining STAs

5.9.1
5.9.2
5.9.3
5.9.4
5.9.5

The consequencerule
The sequencing rule
Casesrules
The wait loop rule

The whilerule

5.10 Conclusions

A Real-time Programming Language

6.1

6.2

6.3

6.4

6.5

6.6

The SAFE Programming Language
6.1.1 Processes
6.1.2 FExpressions,
Interval Model
6.2.1 Typeso
6.2.2 Variables, registers and ports
6.2.3 Interval operators
6.2.4 Ordering of processes
Interval Semanticso L.
6.3.1 FExpressions
6.3.2 Boolean operators
6.3.3 Interval length
6.3.4 Stability and assignment
6.3.50 Sequence.
6.3.6 Conditional
6.3.7 Whileloop
6.3.8 Local variables
SAFE Semantics
6.4.1 FExpressions
6.4.2 Processes L.
Laws . . . o o oo
6.5.1 Ordering,
6.5.2 Boolean operators
6.5.3 Sequence.
6.5.4 Interval length
6.5.5 Assignment and stability
6.5.6 Conditional
6.5.7 Whileloops,
6.5.8 Local variables
Conclusion oL

7 Program Compilation

7.1

7.2 Machine Language Semantics

Machine Language Syntax

7.2.1
7.2.2

Instruction semantics
Program semantics

CONTENTS

CONTENTS ix
7.3 Compiler Specification oL 133
7.3.1 Symbol table o 134

7.3.2 Expressionso e 134
7.3.3 Processes L e 136
7.3.4 Compilation in HOL, 137

7.4 Correctness of Compilation. 0 0L 139
7.5 Proof of Correctness of Compilation 140
7.5.1 Skip ..o 141
7.5.2 Assignment ... Lo oL 142
7.5.3 While Loop 144

7.6 Conclusion 146
IV Hardware 147
8 A Framework for Microprocessor Design 149
8.1 Introduction 149
8.1.1 Hierarchy of computation models 150
8.1.2 Generic arguments Lo 150
8.1.3 Verification template o000 152
8.1.4 Incremental models o0 152

8.2 Machine Specification Framework 0 00, 153
8.2.1 Computational model 00000 153
8.2.2 Definition of relational interpreter 154
8.2.3 Implementation satisfying an abstract machine transition 155
8.2.4 Specification correctness oL 156
8.2.5 Use of an incremental model 157

8.3 Microcoded Machine Example 00000 157
8.4 Incremental Model of Control Memory 161
8.4.1 Overviewof model oo 161
8.4.2 Behaviour relation in HOL 162
8.4.3 Incremental correctness theorem 162
8.4.4 Microcode ROM oo 163
8.4.5 Microcoded machineresulto oL 163
8.4.6 Independent verification of segments oL 165

8.5 SUMMATY . . . o o e e e e 165
Designing a Processor 167
9.1 Instruction Set and Machine Architecture. 167
9.2 Top Level Specification 170
9.2.1 Architectural specification 00000000 170
9.2.2 Processor state oL 173
9.2.3 Instruction specifications L0000, 173
9.2.4 Transition system model of machine. 175

9.3 Microcoded Implementationo 177

CONTENTS

X
9.3.1 Microcode machine oo 177

9.3.2 Verification of microcoded machine 186

9.4 Low-level Implementation 188
9.4.1 Design style and methods 0. 188

9.4.2 Transformational design L. 189

9.5 Conclusions L 192
10 Hardware Compilation 193
10.1 Introduction L 193
10.1.1 Background o 194

10.1.2 Previous work and research experience 194

10.1.3 Outline 196

10.2 A Language of Communicating Processes 196
10.2.1 Syntaxo 196

10.2.2 Algebraiclaws oL Lo 197

10.2.3 Timing delayso L 198

10.3 Normal Form Implementation 199
10.3.1 Normal form definitiono oL 199

10.4 Reduction to Normal Form o L. 201
10.4.1 Assignmento oL 201

10.4.2 Output o o 201

10.4.3 Input . . o 0o 0oL 202

10.4.4 Sequence L 202

10.4.5 Conditional 202

10.4.6 Tterationo 203

10.5 Example Proof 203
10.6 Rapid Prototype Compiler o oL 205
10.7 Mapping Normal Form into Hardware 205
10.8 Conclusions 206

V Technology Transfer 209
11 Transfer into Industrial Design 211
11.1 Historical Background 0oL 211
11.2 Benefits from Formal Methods 0. 213
11.3 Technology Transfer Problems 214
11.3.1 Modesof use 215

11.3.2 Cost considerations Lo 216

11.3.3 Industrial-scale usage oL L. 216

11.4 Requirements for Transfer of Formal Methods 217
11.5 Methods for Transferring Formal Methods 218
11.6 Technology Transfer from the SAFEMOS Project 220

Appendices: Related Work 223

CONTENTS

A System Verification and the CLI Stack
Al Introduction oL
A.2 Our Philosophy of Systems Verification,
A3 Verifying Systemso
A.3.1 Defining finite state machineso
A.3.2 Interpreter equivalence theorems.
A.3.3 Stacking machines oo oL
A4 The CLI Stack and Kit o o o
A4l FM900Lo
A42 Piton
AA3 p-Gypsy . o o oo
Add Kit oo o
A.45 Implementing an applicative language
A.4.6 Building verified applications
A4.7T Some statisticso
A5 Extending the Stack o oo
A.5.1 Revising system componentso
A.5.2 Realizing thestacko oL
A.6 Future Verified Systems oo
A7 Conclusions
B The ProCoS Project: Provably Correct Systems
B.1 Introduction
B.2 History and Experience
B.3 Requirements Engineering and Duration Calculus
B.3.1 Model
B.3.2 Duration calculus oo
B.3.3 Adesign
B.3.4 Component specifications 0 0L,
B.3.5 Further considerations 0oL,
B.4 Program Specification and Development
B.4.1 Semantics of communicating systemso
B.4.2 Specification language Lo
B.4.3 Programming language Lo
B.4.4 Transformations L L
B.5 Compiler Correctness
B.5.1 Compiler development 0.
B.6 Base Systems
B.6.1 Kernel development 000 oL
B.7 Conclusion

Acknowledgements

Bibliography

xi

225
225
227
228
229
230
233
234
235
236
240
241
243
244
244
245
245
246
246
247

249
249
252
253
253
254
255
257
257
258
258
258
260
260
261
261
262
263
264

267

269

xii

CONTENTS

List of Figures

4.1
4.2
4.3

5.1
5.2

7.1
7.2

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Al
A2
A3
A4

B.1
B.2

Hierarchy of models oo 72
Environment oL oo 74
Traffic light controller. o 74
An implementation of Multo 96
Intermediate commands and machine instructions for MultProg 105
Compilation in HOL o o o 138
Correctness of compilation 0oL 139
Arithmetic logic unit: (a) 8-bit (b) Generic 151
Semantics of the POP instruction 153
Relating implementation to abstract machine transition 155
Microprocessor implementation overview 159
Microcode instruction flowo o o000 164
Microcode machine architectureo 178
Microcode machine architecture block decomposition 179
Instruction fetch unit specificationo 0. 180
Instruction select and micro-scheduler units 180
Extracts from data-path specificationo 000 184
Portion of microcode ROMo o 0. 184
Processor core for microcoded machine 0 0oL, 185
Micro-machine specificationo 0oL 186
Equivalence of machines o L o000 231
Composing equivalence theorems 233
FMO9001 specification levels. 0 oL 237
Sample Piton state oL o 239
Timing diagram for Leak oL 254
Specification of gas burner control program in SL 259

xiil

X1V

LIST OF FIGURES

List of Tables

1.1
1.2
1.3
1.4
1.5

9.1

B.1

Cost of saving alife o 10
Applications of formal methods to safety-critical systems 12
Cost-effectiveness of approaches compared by Rolls-Royce and Associates . 15
Comparison of some Hewlett-Packard project metrics 15
Summary of software-related standards and guidelines 24
Abstract type manipulation functions 0oL 172
ProCoS tower of work areas o oL, 253

XV

To err is human but to really foul things up requires a computer.

Farmers” Almanac for 1978, Capsules of Wisdom (1977)

Foreword

In basic science, fundamental discoveries are made by intense concentration on a single
issue, and by rigorous control of all extraneous variation. By contrast, in practical engi-
neering new products are designed and new markets opened up by successful integration
of the discoveries of many diverse branches of basic science. This requires careful speci-
fication of interfaces, which should be tolerant to variation in environmental parameters,
and cost-effective for a range of applications.

In a new scientific discipline, or one which has expanded too fast for its own good, it is a
slow process to establish a consensus on what is the appropriate subdivision of the subject
into its branches, and what are the appropriate methods of research within each branch.
Exploration of the structure of the discipline and elucidation of the interfaces between
its branches are necessary conditions of progress; and, of course, mathematical concepts,
calculations and proofs play the same central role as they have in all well-established
scientific disciplines.

In engineering methodology, two directions of interfacing can be distinguished:

1. Horizontal integration between components of a complex product, perhaps imple-
mented in differing materials or technologies;

2. Vertical integration between levels of abstraction in the design process, ranging from
requirements through specifications, designs, and ultimate implementation.

The scientific study of both kinds of interface can help not only to clarify the subject
matter and structure of a scientific discipline; it can also help the engineer to improve
product reliability and reduce time to market by avoiding the most insidious and most
expensive kinds of error, those that lurk in the interfaces between components and between
phases of the design. The benefits are even greater if the engineering calculations can be
carried out or at least checked with the assistance of a computer.

That is the philosophical background to the safemos project, whose results are reported
in this book, and of several related projects in other leading centres of research. They
concentrate on what are recognized as issues central to computing science, including
requirements, specifications, designs, programs, compilers, machines architectures, and
logic design of hardware. Many of these interfaces are well understood; and here the
project has aimed at an increase in rigour of formalization, preparing the ground for
reliable mechanical support.

The safemos project concentrates on the most urgent problems of ensuring the re-
liability of designs and programs for embedded systems working in real-time; it is not

XVil

XVviii FOREWORD

aimed at any particular product, but it has clarified the principles of reliable design and
implementation.

These principles, we hope, will be just as effective in the timely and reliable implemen-
tation of more general systems, where safety is not such a critical issue. But above all,
the principles enlarge our basic scientific understanding of computing science, in a way
that illuminates the structure of the whole subject and its methods of research.

C.A.R. Hoare

Preface

As the complexity of embedded computer-controlled systems increases, the present indus-
trial practice for their development gives cause for concern, especially for safety-critical
applications where human lives are at stake. The use of software in such systems has
increased enormously in the last decade. Formal methods, based on firm mathematical
foundations, provide one means to help with reducing the risk of introducing errors dur-
ing specification and development. There is currently much interest in both academic
and industrial circles concerning the issues involved, but the techniques still need further
investigation and promulgation to make their widespread use a reality.

This book presents some results of research into techniques to aid the formal verification
of mixed hardware/software systems. Aspects of system specification and verification from
requirements down to the underlying hardware are addressed, with particular regard to
real-time issues. The work presented is largely based around the Occam programming
language and Transputer microprocessor paradigm. The HOL theorem prover, based on
higher order logic, has mainly been used in the application of machine-checked proofs.

The book describes research work undertaken on the collaborative UK DTI/SERC-
funded Information Engineering Directorate safemos project. The partners were Inmos
Ltd, Cambridge SRI, the Oxford University Computing Laboratory and the University
of Cambridge Computer Laboratory, who investigated the problems of formally verifying
embedded systems. The most important results of the project are presented in the form of
a series of interrelated chapters by project members and associated personnel. In addition,
overviews of two other ventures with similar objectives are included as appendices.

The material in this book is intended for computing science researchers and advanced
industrial practitioners interested in the application of formal methods to real-time safety-
critical systems at all levels of abstraction from requirements to hardware. In addition,
Chapters 1 and 11 contain material of a more general nature which may be of interest
to managers in charge of projects applying formal methods, especially for safety-critical
systems, and others who are considering their use.

In Part I of the book, Chapter 1 provides an introduction to the setting to which the
rest of the book is intended to contribute, with particular regard to safety-critical systems,
where correctness is of paramount importance. Standards are likely to provide a major
motivating force for the use of formal methods in the development of such systems, and
a selection of these are surveyed. Chapter 2 continues by giving an overview of the work
undertaken on the safemos project, with a little more detail devoted to areas not covered
in subsequent chapters.

Part II provides an introduction to the main theorem proving tool used on the safemos

X1X

XX PREFACE

project (HOL) in Chapter 3, together with an example of how it may be used in modelling
real-time systems in Chapter 4. Chapter 3 is included to give the reader not acquainted
with the HOL mechanical theorem proving system a knowledge of its capabilities that will
aid the reading of the rest of the book from Chapter 4 to 9.

Chapter 4 considers the mechanization of timed transitions systems (TTS) in HOL to al-
low modelling and reasoning about real-time systems. A traffic light controller example is
used to present the principles involved. A mechanical proof environment could be further
developed along the principles presented here to allow the specification and verification
of real-time systems at a rather higher level of abstraction than considered in Part III.
Embedding of requirements and design specifications, and techniques for demonstrating
that a design meets its requirements using TTS proof rules are discussed.

Part III presents the use of HOL for developing and compiling software. Chapter 5
presents a complete self-contained case study of the verification of a small example pro-
gram. The technique described is intended to be applied when the highest level of integrity
is required. The timing aspects are modelled at the level of the machine clock cycle for the
compiled object code. This is the only way to ensure completely accurate reasoning about
the timing properties of the program. Of course this limits the size of code that can be
handled tractably, but it is envisaged that small sections of safety-critical code could be
verified in this manner to give the highest degree of confidence. The process is mechanized
in HOL to help avoid human error and make it usable for non-trivial examples.

In the past, safety-critical software has often been developed using assembler programs
due to the unreliability of high-level languages, and their unpredictable timing properties.
On the safemos project, a small real-time Occam-like language and its compilation to a
Transputer-like instruction set have been developed and mechanized in HOL. The language
and its interval temporal logic semantics are presented in Chapter 6. Its compilation
and the verification of this process are presented in Chapter 7. It is intended that the
development of more reliable compilation for real-time programming along these lines
will enable higher-level programming techniques to be used for safety-critical systems
with more confidence in the future.

Correct software must be run on correct hardware for overall system correctness. There-
fore the formal development of both aspects of a software/hardware system is important.
Part IV presents aspects of verifying hardware designs. Chapter 8 discusses techniques
to design microprocessors in a generic manner. Chapter 9 presents the development of
a simple (but realistic) Transputer-like processor. The verified hardware described could
be used to run programs compiled by the technique previously presented in Chapter 7.

An interesting recent development is the possibility of compiling hardware in a similar
manner to that which software is routinely compiled today. Chapter 10 gives a more
speculative presentation of how hardware for safety-critical systems could be developed
in the future. These techniques are still an active area of research at an early stage of de-
velopment and there is potential for considerable progress. For example, there is growing
interest in the area of hardware/software co-design, which typically involves the interven-
tion of a design engineer to determine suitable tradeoffs between the use of software and
hardware.

Finally in Part V, aspects of technology transfer from formal methods academic research
to industrial application are addressed. For formal methods to be accepted, their use

PREFACE XX1

must be integrated into current best industrial practice. It is too risky and expensive to
completely replace existing methods. Chapter 11 discusses some of the issues involved
and considers the future prospects for methods such as those investigated by the safemos
project.

Two appendices present related work with similar aims to safemos, although using
different techniques. At Computational Logic, Inc. (CLI) in the US, the verification of
a number of related software and hardware levels has been undertaken using the Boyer-
Moore theorem prover. Appendix A presents this inspiring example, and also some of their
more recent work. In Europe, the collaborative ESPRIT ProCoS project has investigated
formal techniques from requirements down to machine code and how these relate to each
other. Appendix B gives an overview of the achievements of the first phase of this research
project. These efforts are still ongoing and further progress and results are expected.

A large bibliography is included at the end of the book for those interested in particular
areas of the safemos project, and related work by other researchers in the field of soft-
ware/hardware system verification. A number of relevant standards and other publicly
available documents are also included.

J.P. Bowen

XXii PREFACE

Contact Addresses

Editor

Jonathan Bowen

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Road

OXFORD OX1 3QD

England

Email: Jonathan.BowenQcomlab.ox.ac.uk
URL: http://www.comlab.ox.ac.uk/oucl/people/jonathan.bowen.html

Contributors

Juanito Camilleri

Department of Computer Studies
University of Malta

University Heights

Msida

Malta G.C.

Email: juanypanther@carla.dist.unige.it

Rachel Cardell-Oliver

Department of Computer Science
University of Essex

Colchester

ESSEX CO4 35Q

England

FEmail: cardr@essex.ac.uk

xXx1il

XX1V

Mike Gordon

University of Cambridge
Computer Laboratory
New Museums Site
Pembroke Street
CAMBRIDGE CB2 3QG
England

Email: mjcg@cl.cam.ac.uk

Roger Hale

SRI International

Cambridge Research Centre (CRC)
Suite 23

Millers Yard

Mill Lane

CAMBRIDGE CB2 1RQ

England

FEmail: rwsh@cam.sri.com

John Herbert

SRI International

Cambridge Research Centre (CRC)
Suite 23

Millers Yard

Mill Lane

CAMBRIDGE CB2 1RQ

England

Email: jmjhQcam.sri.com

Prof. C.A.R. Hoare

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Road

OXFORD OX1 3QD

England

Email: Tony.Hoare@comlab.ox.ac.uk

CONTACT ADDRESSES

CONTACT ADDRESSES XXV

He Jifeng

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Road

OXFORD OX1 3QD

England

Email: Jifeng.HeQcomlab.ox.ac.uk

Prof. Hans Langmaack

Christian-Albrechts Universitat zu Kiel

Institut fur Informatik und Praktische Mathematik
Preuferstrafie 1-9

D-24105 Kiel

Germany
FEmail: hl@informatik.uni-kiel.d400.de

Ian Page

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Road

OXFORD OX1 3QD

England

Email: Tan.Page@comlab.ox.ac.uk

Paritosh Pandya

Tata Institute of Fundamental Research
Computer Science Group

TIFR, Homi Bhabha Road

Colaba

BOMBAY 400 005

India

Email: pandya@tcs.tifr.res.in

Andrew M. Pitts

University of Cambridge
Computer Laboratory
New Museums Site
Pembroke Street
CAMBRIDGE CB2 3QG
England

FEmail: Andrew.Pitts@cl.cam.ac.uk

XXV1

Anders P. Ravn

Department of Computer Science
Technical University of Denmark
Building 3440

DK-2800 Lyngby

Denmark

Email: apr@id.dth.dk

David Shepherd

INMOS Limited
1000 Park Avenue
Aztec Way
Almondsbury
Bristol

AVON BS12 45Q
England

FEmail: des@inmos.co.uk

Victoria Stavridou

Department of Computer Science

Royal Holloway and Bedford New College
University of London

Egham Hill

Egham

SURREY TW20 0EX

England

FEmail: victoria®@dcs.rhbnc.ac.uk

Bill Young

Computational Logic, Inc.
1717 West Sixth Street
Suite 290

Austin

Texas 78703-4776

U.S.A.

Email: young@CLI.com

CONTACT ADDRESSES

