ESPRIT 3104
ProCoS

A ProCoS Project Description
ESPRIT BRA 3104

Author: Dines Bjgrner
Date: Oclober 1389
Doc. Id.: ID/DTHDB 3 — Version 3

esprit BRA project 3104

Doc. type: General Information

Status: Final

Confidentiality: Free Distribution
Activity-alloc: Management
Distribution: |TO BE SPECIFIED |

Copyright (c) 1989 ID/DTH, Kiel, OU, RHC, DAIMI, MU

Document History
One version of this report was submitted for a CSSR conference, Strebske Pleso, Nov. 6-10, 1989:
Proceedings to be publ. by North Holland. That version has DB as single author, but recognizes
all present co-authors as collaborators. Present version, slightly augmented, aimed for EATCS
Bulletin publication.

Document Purpose
General information for wide circulation.

Project Sponsor

This report reflects work which is partially funded by the Commission of the European Commu-
nities (CEC) under the ESPRIT programme in the field of Basic Research Action proj. no. 3104:
“ProCoS: Provably Correct Systems”

A ProCoS Project Description
ESPRIT BRA 3104

Dines Bjgrner

Abstract

The aims and objectives, baseline and rationale, as well as the detailed structure of a
3 country, 6 university, 30 month research project supported in part by the European
Economic Community is described.
The very short aim of the project is to contribute to the science and engineering
of constructing mathematically provably correct safety critical computing systems.
We believe that one of several novel features of this project is that it is heing
planned around a notion of theoretically motivated project component diagram, see

figure 1.

Contents

1

2

8

9

Introduction

Synopsis

Objectives and Advance
Rationale

Introduction to Workplan

The Workplan
Gl Logical SPRIcknre o' i 3e S R G e F B E R R B R e e s s
6.2 Deliverables . s 5 » 5 @ s e 5 8 & woaie s e B R B R e b R R G b g

Reading List
Draft Project Reports

ProCoS Project Report Mailing List

10 Acknowledgements

11

12

13

14

1 Introduction

The acronym title of the research project described here is: ProCoS which stands for:
Provably Correct Systems.
Project partners, site acronyms, their denotation, and site leaders are:

DTH: Department of Computer Science, Technical University of Denmark,
Lyngby, Denmark. Dines Bjgrner.

Kiel: Institute of Informatics and Applied Mathematics, Christian Albrechts
University at Kiel, Federal Republic of Germany. Hans Langmaack.

OLD: Institute of Informatics, Oldenburg University, Federal Republic of Ger-
many — subcontractor to Kiel. Ernst Riidiger Olderog.

MU: Department of Computer Science, The University of Manchester, Eng-
land. Douglas Edwards.

OU: Programming Research Group, Computing Laboratory, Oxford Univer-
sity, England. C. A. R. Hoare.

RHC: Department of Computer Science, Royal Holloway (and Bedford New)
College, London University, England. Ursula Martin.

DAIMI: Department of Computer Science, Aarhus University, Denmark. Flem-
ming Nielson.

We believe that the current paper is of general interest for the following reasons: (i)
it clearly states the synopsis, objectives and hopes for advance, rationale, and baseline
of the project; (ii) it enunciates a project planning, and hence subsequently a project
management control, scheme in the form of a project component diagram and its mapping
onto a project graph, and (iii) it applies state-of-the-art research results.

2 Synopsis

Our objectives are to advance the state of the art of systematic design of complex het-
erogeneous systems, including both software and hardware; in particular, to reduce the
risk of error in the specification, design and implementation of embedded safety-critical
systems.

To approach this goal, we plan to develop a concrete system consisting of the following
five major components:

e A specification language.
e A programming language.

A definition of a hardware machine.

A compiler from the programming language to instructions of that machine.

2

» A kernel supporting the execution of compiled programs on that machine.

The syntax and semantics of these components will be formalised, and their formal
interrelationships will be established.

The project will base its work on the CSP/occam/transputer tradition. During a first
15 month phase, a simple occam subset and a simple transputer-like RISC machine will
be selected and formalised as far as possible. During the second 15 month phase, our
methods will be generalised and improved, and the system design reiterated.

Since implementation of the machine in hardware is not part of this project, liaison will
be made to relevant hardware projects, in particular the IED! safemos project.

The work will furthermore be supported by (i) case studies of requirements for and devel-
opment of safety-critical systems, (ii) experiments in computerised verification support,
and (iii) liaison with a number of related projects. '

The result of the project is expected to take the form of a book on principles of con-
tructing provably correct systems using the developed system as a special case.

The book could be the scientific basis of the software side of a larger-scale commercial
or precompetitive project for the design and production of a thoroughly validated system,
suitable for application in a safety-critical environment.

3 Objectives and Advance

The major engineering achievements of this century have been firmly based on an un-
derstanding of the relevant branches of science. They have involved cooperation between
hundreds or thousands of engineers of various specialisms, and on strict control of correct-
ness of design and accuracy om implementation. For both these purposes, it is essential
to make an initial split of the overall task into many subtasks, to define with utmost
precision the interfaces between the subtasks, to make an early check of their consistency
and completeness of the interfaces. It is necessary also to install technical and manage-
rial procedures to inhibit errors in implementation, and to check that they have been
successful in doing so.

This basic research action stems from the belief that similar engineering and man-
agement principles should be observed in large-scale software projects, and will result in
better control of costs and delays in delivery. These principles are of especial importance
in projects which have implications for public safety. But the principles must have a
sound basis in the underlying science. The objective of the action is to clarify that basis,
to bring together the various relevant scientific disciplines, to identify and concentrate
attention on missing links and to gain experience and understanding of the applicability
of the principles on component parts of a demonstrator project of moderate size.

The demonstrator project has been selected for its possible relevance to safety-critical
systems, with an element of reactive control. We have identified the following important
interfaces, which must be specified with great rigour and accuracy:

!Information Engineering Directorate, UK

1. The interface to reality: the physical properties and behaviour of the environment
within which the software will be embedded, including control objectives and safety
criteria.

2. Interface to a compiler: the programming language in which each application-
specific program will be expressed.

3. Interface to the hardware: the machine language produced by a compiler which
will be executed by the physically embedded hardware.

Each of these interfaces are so important that they should if possible be given two
specifications, using independent specification methods, accompanied by a proof of their
mutual consistency.

The main work of the action is to develop and formalise the technical procedures to
aid in implementing the transition between these major interfaces.

4. Between 1 and 2, we need top-down systematic development methods for extracting
designs from specifications, and programs from designs. The use of these will be
illustrated by a case study.

5. Between 2 and 3, we need to specify the action of a compiler as a set of correctness-
preserving transformations. The design of the compiler will involve specification of
interfaces between its various parts, followed by their implementation.

6. Between 3 and the actual electronic(s) of the hardware lies the activity of VLSI
design. The work under this heading is not directly funded under the ProCoS
action; it will be covered by strong technical liaison with other related projects.

The main technical innovation of the project lies in its attemp to co-ordinate the separate
specialist scientific theories and engineering skills of the individual participants towards
an integrated common objective. We will be able to identify and concentrate on any gaps
in the available underlying science. The international nature of the collaboration with
six research centres spread over three countries will pose an additional challenge; if this
challenge can be met in a scientific fashion, this will contribute to a major advance in
understanding of the relevance of scientific and engineering principles to the management
and control of large-scale software projects.

In the longer term, the discoveries of this project may serve as the scientific basis of
national and international standards for safety critical software.

4 Rationale

The successful and reliable design of an engineering product requires a judicious choice
of levels of abstraction, which permit different aspects of the design to be carried out
independently at different times by different people; and which permit the correctness of
each part of the design to be checked by strongly localised reasoning.

In the ProCoS project, we will take advantage of the standard hierarchies of levels of
abstraction; starting from machine code, higher level language, operating system, library
and continuing right up to methods for reliable development of application programs for
embedded systems.

Within each of these levels of abstraction, there is considerable experience of formal
design on which we can draw. But the place where the bugs may now congregate is
in the interfaces between the levels of abstraction, and between the major components
within each level of abstraction.

One of the major goals of the ProCoS project is to close these gaps. Obviously in any
practical project, this requires great vigilance and hope that from this experience may
emerge a general theory of interfacing, using perhaps a generalisation of the methods of
data abstraction, which can be studied profitably within a categorical setting.

5 Introduction to Workplan

In accordance with the main components and additional activities referred to in the
synopsis we identify eight major project activities:

1. Case Study: One or more case studies are to be made of embedded systems found
in typical safety critical applications: Railway Signalling, Hydro-electric power
station Water Control, etc. Rigorous interface specifications must be developed.
These shall reflect the properties and behaviour of the environment, control objec-
tives, and safety criteria. The specifications shall be meaningful to experts of the
application area and to safety analysts. Provably correct programs implementing
the computerised monitoring and control of such systems conclude this area of the
action.

This part of the action should ideally produce requirements to the delineation of
the specification, programming and machine languages, and the transformation
rules.

2. Specification Language: A specification language capable of expressing salient fea-
tures of the control and monitoring of safety critical systems is selected, a mathe-
matical model for this language is given, and its transformation rules (proof system)
related to the programming language.

3. Programming Language: A small number of gradually more and more ambitious
programming languages are selected, and consistently given abstract and opera-

tional semantics.

The languages will range from a minimum language roughly corresponding to the
Dijkstra/Gries nondeterministic language to a maximum language being more com-
plex than the present occam-2.

The minimum language is the lower limit to the ambitions of the project, and the
maximum language an upper limit. Fach subtask (eg. compiler implementation)

5

should support the minimum language at least, but where necessary may take
advantage of the features of the maximum language.

4. Machine Language: A transputer-like machine language is delineated, abstract
and operational semantics are developed, the two semantics’ are proved consis-
tent, and the semantics of the programming and the machine languages are related
— the latter as part of the compiler verification effort.

The machine language is to be selected in co-operation with the safemos project
conducted by inmos plc., Oxford Univ., SRI International Cambridge, and Cam-
brdige Univ.

It is expected that the machine is transputer-like, where at the minimum level
of ambition, each transputer will support only one occam-like process. Programs
resulting in several processes will then be handled by a hardware configuration
involving at least that number of transputers.

5. Compiler Development: The project specifies a compiler, implements this com-
piler and proves it correct. The compiler compiles programs of the programming
language and generates code for the machine language.

Two facets of verification are identified: compiling verification (compiler specifica-
tion verification): verifying that the specified code is correct, and compiler verifi-
cation: verifying that the compiler itself (executable compiler program) correctly
generates that code.

6. Kernel: A kernel, ie. an absolute minimum operating system, has to be identified,
specified and correctly developed. This kernel shall provide minimum support for
the execution of PL programs on the ML machine such as communication support.

6 The Workplan

6.1 Logical Structure

In the following, the major actions are broken down in so-called work-items which form
the basic components of the workplan. Figure 1 (page 7) illustrates the basic compo-
nents of the workplan. Figure 2 (page 9) illustrates a usage dependency graph of the
components.

Short Explication of Component Diagram

The Component Diagram (figure 1, page 7) is built around two commuting diagrams
with some additional parts. The diagram basically represents our present view of the
mathematical relationships among the different levels of abstraction. An important result
of the project is to confirm or more likely to change this view!

The upper commuting diagram of figure 1 connects the specification and program-
ming language ‘algebras’. The lower commuting diagram connects the programming and

6

Figure 1: ProCoS Project Component Diagram

PDS CSPV———{CICV]
SL ASL
STR
SAT TR ACT
APL
PL CPL
OPL
CLincC
s CI gg;
LTH1 Cv2
Vs
OML
LTH? ML CML
/ AML|
LTH3 CLincK
KD KS |——r KI

Legend:

PDS: Problem Domain Spec.
CSPV: Case Spec.&Prop. Verif.
CICV: Case Impl.&Corr. Verif.
SL: Specification Lang.

ASL: Abstr.SL Sem.

PL: Progr.Lang.

APL: Abstr.PL Sem.

OPL: Operat.PL Sem.

CPL: Consist.: OPL wrt. APL

ACT: Corr.Thm.: SAT to
APL,ASL

SAT: Satisf.Rel.: PL to SL
TR: Transf.Rules: SL to PL
STR: Soundness of TR
CS: Compiler Spec.

CI: Compiler Impl.

CLincC: CLine Comp. Verif.
Study

CV1: Compiling Verif.

PTS: Prog.Transf.Support.
CV2: Compiler Verif.

VS: Verif.Supp.

ML: Machine Lang.

OML: Operat.ML Sem.
AML: Abstr.ML Sem.

CML: Consist:OML wrt. AML
LTH1: Liai.to safemos
LTH2: Liai.to ELLA

LTH3: Liai.to SSVE

KD: Kernel Design

KS: Kernel Spec.

KI: Kernel Impl. & Verif.
CLincK: CLinc OS Verif.Study

machine language ‘algebras’. Arrows usually designate various mathematical relation-
ships.

SL, PL, ML designate informal definitions of respectively the specification, the pro-
gramming and the machine languages. A- and O- prefixes to these acronyms designate
abstract, respectively operational semantics’ for those languages. That completes the
corners of the main diagram. Now the edges and arcs.

SAT denotes the satisfaction relation tying programs to specifications. TR is also
a label of the PL-SL relationship designating rules for transforming specifications into
programs. STR denotes the soundness proof of the transformation rules TR and labels
the edge going from the TR box to the APL-ASL arc since soundness of the rules is
to be given relative to the relationship between the semantics of the specification and
programming languages.

Similarly, in the lower diagram, CS is to be thought of as a label of the PL-ML
arc since the compiler specification defines a relation between programs and code. And
CV1 (compiling verification) can be thought of as the label of the relation OML-QPL
between the operational semantics of the machine and the programming languages. Put
in different terms: CV1 verifies the compiling algorithm from PL to ML. CV2 (compiler
verification) labels the arc from compiler specification to compiler implementation.

PTS denotes support for program transformations used in the compiling verification
CV1. General verification support for the comipler verification is denoted by VS.

CPL, CML labels respectively the OPL-APL and OML-AML arcs — and designate
respective consistency proofs.

Additional parts not directly relatable in a mathematical sense to the commuting
diagram structure, but supporting the work designated by the commuting part are:
LTH1-3 designate liaison to “transformation to hardware” efforts outside the present
project. The PDS-CSPV-CICV and the KD-KS-KI triples stand for the case study and
the kernel development.

The multiple arrowed lines (between the CSPV-CICV, CS-CI, and KS-KI boxes)
stand for stages of proper software development. The PDS-CSPV and KD-KS arrows
stand for relations between specifications and ‘requirements’.

Short Explication of Work-itemn Dependencies

While the component diagram of figure 1 describes logical (mathematical) relations be-
tween the documents to be produced by corresponding work items, the dependency graph
of figure 2 describes a feasible, physical way of ordering these work-items.

The usage dependency graph should not be read too literally: work items that are
shown in parallel with others (except those connected by bulleted, vertical lines) need
not be pursued concurrently. Also: no absolute timing (ie. no time bar chart) will (yet)
be given.

The triples: (ASL-APL-SAT), (ASL-APL-ACT), (APL-OPL-COL), and (OML-AML-
CML) somehow overdefine activities related to these work-items. Within each triple the
connected work-items are, more or less performed simultaneously.

Finally the dependency graph is only very tentative — its establishment, its further
refinement and its use as the basis for project monitoring and control is a matter of
project management concern.

Further explication is given under Legend in the right-hand side of the graph.

6.2 Deliverables

The project will deliver one major, and one minor deliverable. The major deliverable is
a major, technical report. The minor deliverable is a set of demonstrator software.

Major Deliverable

The project will deliver one major technical report. This report will appear in two
versions: '

Interim version: after 14 months (at milestone 1).
Final version: after 30 months (at milestone 2).

The status of both versions will be P: public, available at a nominal charge.

The interim and the final reports are the only proper deliverables from this project. The
expectedly very many technical and research notes and reports generated during the
project by the work-items are not in themselves deliverables, but shall serve to justify
the two deliverables. These notes, however, will have status C: available to participants
and for action monitoring.

Contents of Main Deliverables

The interim and final versions of the main deliverable will take the form of a monograph-
like book on principles of development of provably correct systems. Thus, the book is
intended to present the essence of our work in a comprehensive form.

The book will tentatively have the following abstract syntax for chapters:

1: Introduction:
Introduction to issues related to provably correct systems and safety-
critical systems.

2: Development of Provably Correct Systems:
Overview of the methodological approach (project component diagram
and project dependency graph, figures 1-2.), other principles, techniques
and tools.

3: Case Studies:
The essence of the PDS-CSPV-CIPV study, research and development.

4: Specification Language Issues:
The essence of the SL-ASL-TR-STR-ACT-SAT study and research.

9

Figure 2: Work Item Dependency Graph

> TIME
PDS CSPV cICV
SL SAT TR
ASL ACT STH
PL APL CPL
cs c1
REL cv1 cv2
CLIA / PTS Vs
CLincC/ |
- | oML L
ICLincK] b
TN | .
ML KD KS KI
-
LTH; AML CML

10

Legend:

e Time progresses left-to-

right.

o Directed arcs designate

time dependency.

Vertical, bulleted
lines designate mutual in-
terdepency.

The ProCoS project ba-
sically reiterates increas-
ingly larger parts, left-to-
right, of the graph in the 3
cycles:

— May ’89 - Oct. ’89
— QOct. ’89 - July '90
— July 90 - Nov. 91

No more exact time bar
chart will be given for the
work items shown to the

left.

Some work items (CLinc-
and LTH-related) continue
beyond their initial [de-
pendency] phases.

e LTHi stands for LTH1-2-3.

5: Programming Language Issues:
The essence of the PL-APL-OPL-CPL study and research.

6: Machine Language Issues:
The essence of the ML-AML-OML-CML-LTH1-LTH2-LTH3 study and

research.

7: Compiler Development Issues:
The essence of the CS-CI-CV1-CV2-CLincC study, research and devel-

opment.

8: Kernel Development Issues:
The essence of the KD-KS-KI-CLincK study, research and development.

9: Verification Support Issues:
The essence of the VS1-VS2 study, research and work.

10: Mathematical Foundations:

A summary of the mathematics underlying the development of provably
correct systems, ie. of the ASL-SAT-STR-ACT, APL-OPL-CPL, OML-
AML-CML studies and research.

11: Programming Methodology:
A summary of the programming methodological diversities encountered
in the CSPV-CIPV, SL-TR, PL, ML, CS-CI-CV1-CV2, KD-KS-KI stud-
ies, research and development, as well as in establishing the project com-
ponents and the process of following the component diagram as a recipe
for full development.

Appendix A: Annotated Report Bibliography:
A complete, extensively annotated list of the technical notes and reports,
and the research notes and reports generated during the project.

Appendix B: Other References

Appendix C: State-of-the-Art:
An assessment of the State of the Art of the field as obtained through
the reading and liaison activities.

Appendix D: Terminology

For reasons of easier flow of reading, certain chapters, eg. 3-4-5-6, may appear rather
as chapters 3 + j + 4 x4 for j from 0 to 3, and ¢ from 0 to 2 — where 3 + j is above

chapter, and + designate its iteration.

Minor Deliverable

The application of the various development methodologies — for the case study examples
the compiler and the kernel — involves actual development of software, and involves
the use of software tools — LALR(K) parser generators, attribute grammar evaluators,

OBJ3, other rewrite rule propocessors, etc.

11

Insofar as the combination of these constitute demonstrable software, the ProCoS
project will deliver such demonstrables.
We foresee the following such demonstrables:

e 1-2-3 case study safety critical software demonstrators

e A compiler

e A Kernel (Run-time-system)

¢ A Simulator — for running the kernel, the compiler and the compiled safety critical

7

case study software

Reading List

One way of formulating the project baseline is to list a very short set of publications and
reports to be read by all project participants, whether contributed or hired. The below
list thus exemplifies a credo on which the project starts.

|

Anders P. Ravn, Hans Rischel, Hans Henrik Lgvengreen: A Design Method for
Embedded Software Systems; BIT, vol. 28, pp. 427-438, 1988.

. Ernst-Riidiger Olderog: Nets, Terms and Formulas; Habilitationsschrift, Kiel Univ.,

1988. [Selected passages.]

. Edsger W. Dijkstra: Guarded Commands, Nondeterminacy and Formal Derivation

of Programs; CACM, vol. 18, no. 8, pp. 453457, August 1975.

C.A.R.Hoare et al.: Laws of Programming; CACM, vol. 8, no. 8, pp. 672-686,
August 1987, [Corrigenda no. 9, p. 770.]

. inmos ltd.: occam-2 Programming Manual; Prentice-Hall International 1988.

G.D.Plotkin: An Operational Semantics for CSP; in: Formal Description of Pro-
gramming Concepts II, Proceedings of TC-2 Work. Conf., Garmisch Partenkirschen,
June 1982 (ed. D.Bjgrner); pp. 199-225, North-Holland 1982.

Jonathan Bowen: Formal Specification and Documentation of Microprocessor In-
struction Sets; in Schumny, H., and Mglgaard, J. (eds.): Microprocessing and
Microprogramming, Vol. 21, pp. 223-230, North-Holland 1987.

. Flemming Nielson & Hanne Riis Nielson: Two-level Semantics and Code Gener-

ation; Journal of Theoretical Computer Science, vol. 56, pp. 59-133, 1988. [Ap-
pendix may be skipped.]

. Dines Bjgrner: Formal Development of Interpreters and Compilers; in: Intl. Comp.

Symp.; Proc. (ed. E.Morlet & D.Ribbens), Liege, Belgium; North-Holland, pp. 1-
22, 1977.

12

10. William R. Bevier: Kit: A Study in Operating System Verification; Computational
Logic Inc., 1988. (To be published in IEEE Transactions on Software Engineering.)

11. Nachum Derschowitz: Computing with Rewrite Rules; Information and Control,
vol. 65, pp. 122-157, 1985.

12. P. A. Lindsay: A Survey of Mechanical Support for Formal Reasoning; Software
Engineering, vol. 3, 1988.

8 Draft Project Reports

Although only 3 months underway, the project has already generated the following in-
ternal research and technical notes and reports:

References

[DAIMI KHP 1] Kim H. Pedersen: Specification and verification of an occam compiler,
technical report, draft, 1989-07-14.

(ID/DTH AB 1] Andrzej Blikle: Designing a Language of Concurrent Processes, tech-
nical report, pre-draft, 1989-07-06.

[(ID/DTH AR 1] Annie Rasmussen: ProCoS Bibliography, general information, draft.
[ID/DTH AR 2] Annie Rasmussen: References , general information, draft.

[ID/DTH BFH 1] Bettina Feldskov Hansen: ProCoS Staff, general information, draft,
1989-08-09.

(ID/DTH KMJ 1] Kirsten Mark Jensen: Note on a small CSP like Language, technical
report, 1989-07-14.

[ID/DTH HHL 2] Hans Henrik Lgvengreen: Note on the ProCos Programming Lan-
guage, draft 1.1, 1989-07-14.

[ID/DTH HHL 3] Hans Henrik Lgvengreen: Definition of the ProCoS Programming
Language, Level 0, July 29, 1989, 6 pages.

(ID/DTH JNO 1] Jens Norddahl: Gasbrender - Eksempel, Specifikation og verifikation
af tidsegneskaber, notes, 1989-07-06. (Gasburner example: Specifica-
tion and Verification of Real-time Properties)

(ID/DTH APR 1] A.P.Ravn and Jens Nordahl: Safety Critical Embedded Software Sys-
tems, July 1989, 14 note pages.

ID/DTH APR 2] A.P.Ravn: Further Notes relating to [ID/DTH APR 1], 20 July 1989,
9 pages.

13

[ID/DTH ZCC 1] Zhou Chao-Chen: A note on High Order Communication, notes,
draft, 1989-07-10.

[KIEL BB 1] Bettina Buth et al.: ProCoS Report: Compiling the PrOccam0 Lan-
guage, technical report, preliminiary version, 1989-07-14.

[OLD ERO 1] Ernst Rudiger Olderog: Specification Language Issues, CWI Amster-
dam, July 1989, 34 overhead foil presentation pages.

[OX JB 1] Jonathan Bowen: Z Specification of the u transputer Instruction Set,
technical report, draft version 0.1, 1989-07.

[OX PP 1] Paritosh Pandya and Jonathan Bowen: An Operational Semantics
for the ProCoS Level 0 Assembly Language, technical report, draft
version 1.0, 1. August 1989, 12 pages.

[OX HJ 1] He Jifeng and C.A.R.Hoare: Operational Semantics for occam, 5. Jul
89, 32 pages

9 ProCoS Project Report Mailing List

The ProCoS project is eager to create a mailing list for those EACTS members who
are interested in following the project. Please mail your exact mailing address to: Ms.
Annie Rasmussen, ProCoS project administrator, Dept. of Computer Science, Bldg. 344,
Technical University of Denmark, DK-2800 Lyngby, Denmark; e-mail: procos@iddth.dk.

10 Acknowledgements

Major parts of the present note is extracted from the ProCoS technical annex. I wish
again to thank the co-authors of that document for an inspiring project initialisation
phase, Their names were mentioned on the title page of this note. In particular I thank
Tony Hoare for having first inspired the conception of the project.

Sections 3-4 are extracted from material mainly authored by Tony Hoare. The first
identification of the diagram of figure 1 was made by Ernst Riidiger Olderog®. Hans
Henrik Lgvengreen helped in producing the Technical Annex from which this note was
culled.

?Now professor of theoretical computer science at Oldenburg Univ., FRG,

14

