A ProCoS II Project Description:
ESPRIT Basic Research project 7071

Jonathan Bowen et al.

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road, OXFORD 0OX1 3QD
Tel: +44-865-273838 Fax: 4+44-865-273839

Email: procos-request@comlab.ox.ac.uk

Abstract

An overview of the current and planned activities of the ESPRIT Basic Research
ProCoS II project (no. 7071) on “Provably Correct Systems” is presented. This is
a follow-on project to ProCoS (no. 3104) previously announced in the Bulletin of
the EATCS [3] and subsequently reported elsewhere (e.g., see [2, 4, 30]). A selected
bibliography for both phases of the project is included.

1 Introduction

The ESPRIT Provably Correct Systems project is underway again. After discouraging
delays and cuts, we have reformed a tightly focussed project with just four partners in
1992, dedicated to cover the fundamental technical aspects of a development process for
critical embedded systems, from the original capture of requirements right down to the
computers and special purpose hardware on which the programs run.

This breadth of scope is inspired by the brilliant work of Bob Boyer and J. Strother
Moore at Computational Logic Inc. (CLInc) in Austin, Texas [16, 27]. The distinctive
approach of the European effort is to emphasise:

1. A constructive approach to correctness, using proven transformations between speci-
fications and designs and programs and compilers and hardware. Thus errors at this
stage are avoided, so their absence never needs proving subsequently.

2. The use of a common abstract mathematical model to ensure global consistency
across all the interfaces between design phases, notations, and technologies.



3. The inclusion of explicit parallelism and timing constraints throughout the develop-
ment.

In these ways we hope to achieve an advance in technology in spite of reductions in re-
search funding; furthermore, we hope to deliver theories and transformations which can
be cheaply reused without specialist knowledge on an industrial scale for new projects and
new products, as the need arises.

The partners in the project are as follows:

1. Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, U.K.
Responsible for coordination, political, financial and technical. Concentrates on a
universal model to secure consistency of all the interfaces involved. Prof. Tony Hoare
leads the site and the project, with the help of Jonathan Bowen, Stephen Brien, He
Jifeng, Wayne Luk, lan Page and Augusto Sampaio.

2. DTH, Department of Computer Science, Building 344, Technical University of Den-
mark, DK-2800 Lyngby, Denmark. Responsible for interface to reality, control en-
gineering etc. Concentrates on capture and formalisation of total requirements, and
the development of specifications for the computer-controlled components of the sys-
tem. Anders P. Ravn is the site leader and is aided by Kirsten M. Hansen, Michael
R. Hansen (currently visiting Oldenburg), Hans Henrik Lgvengreen, Jens Nordahl,
Hans Rischel, Jens U. Skakkebak and E.V. Sgrensen.

3. University of Oldenburg, FB10 - Informatik, Ammerlander Heerstrafle 114-118, D-
2900 Oldenburg, Germany. Responsible for production of correct programs. Con-
centrates on the design process from specification to the code of programs executed
perhaps on multiple computers; plans mechanical checks and aids for this process.
Prof. Ernst-Ridiger Olderog is the site leader, with Stephan Roéssig and Michael
Schenke as team members.

4. Christian-Albrechts-Universitat Kiel, Institut fir Informatik und Praktische Math-
ematik, Preuflerstrafle 1-9, D-2300 Kiel 1, Germany. Responsible for production
of correct machine code from timed high-level programs. Concentrates on the sys-
tematic development of a provably correct compiler. Prof. Hans Langmaack leads
the site with Bettina Buth, Karl-Heinz Buth, Martin Franzle, Burghard von Karger
(currently visiting Oxford), Markus Miiller-Olm and Ruben-Benjamin Reincke as
members of the research group that do work for or related to the project.

Each site is responsible for progressing an agreed series of case studies, and for writing
up a self-contained textbook for experts in the relevant area. In addition, there is a great
deal of associated work not funded by the CEC. For example, Oxford hopes to explore the
development of provably correct hardware compilers, targeting on Field Programmable
Gate Arrays; and Lyngby are exploring theories to support reliability assessment.



Figure 1: Work part interdependencies and responsibilities

Requirements: Lyngby

Specification: Oldenburg

Universal model:

Ozford

Program: Kiel

Machine: Kiel Hardware: Ozford

2 Work Plan

2.1 Technical Coordination — Oxford

Oxford is in charge of overall technical coordination and Figure 1 shows the main work
parts of the project. The workplan for ProCoS I is structured around the research areas
discussed in this section.

The project aims to develop a suite of techniques and mathematical theories which
give a coherent approach to development of complex heterogeneous systems. Introduction
of a common or universal model based on a Z calculus [28] would support the synthesis
of a variety of design paradigms at the hardware, software and system levels. It starts
with descriptions of all potential observable components of embedded safety-critical sys-
tems. A collection of system constructs will be defined on the subsets of observations, and
their algebraic properties are then explored to give an algebraic semantics to a family of
languages.

The universal model acts as a basis of the mathematical theory which connects various
development activities; it has to support the coherent transition from requirement analysis
down to hardware implementation. The universal model is also used to combine and
coordinate those specific models adopted in different sites; each of which has to preserve
the refinement ordering and the algebraic laws and must not introduce any extra observable
components. As a result those models can be embedded into the universal model such that
the satisfaction relation among two adjacent levels is consistent with the refinement order
defined in the universal model.

Levels of interest to be modelled on this project, together with selected published



material produced so far during both phases of the project, include:

e Duration Calculus [18, 26, 33, 34, 37, 39, 41, 42]
e A design calculus [29, 31, 35]
e Compiling specifications [6, 10, 19, 21, 22, 23, 24]

e Hardware transformations [20, 32]

2.2 Requirements Engineering — Lyngby

Lyngby will contribute to the project within the following areas:

Specification and design of real-time systems. In cooperation with Oxford we plan
to develop a system specification notation and calculus for real-time systems based on the
Duration Calculus [34]. Its relationship to models and notations for dynamic systems and
control systems will also be investigated [14, 33, 42], as well as its relation to program
specifications as investigated in Oldenburg [9].

This line of work will also investigate design paradigms for real-time systems, and
especially study the links to control theory. We also hope to find verification techniques
that can utilise mechanised proof support or model checking along the lines of the timed
automatons of Dill and Alur or timed transition systems of Sifakis [40].

Dependability. In collaboration with the ESPRIT PDCS project we intend to study
dependability aspects of system specifications. We will strive to establish a formal interface
between reliability assessment models and the models defined by the specifications [26, 38].

Case Studies. We plan to develop more ambitious case studies. These include a signal
and switching system for a railway station on a trunk line [37]. An overview of a simple
gas burner example, from requirements to hardware is given in [9].

2.3 Design — Oldenburg

The specific contribution of Oldenburg will be the formulation of a specification language
S L7 for untimed and timed behaviour of communicating programs; and the development
and correctness proof of compositional transformation rules for a design calculus. This will
extend the work of Oldenburg in ProCoST in the following directions:

Specification Language. The specification language SL of ProCoS1 divides a speci-
fication into a trace part and a state part. This division is in principle closely related to
ideas in UNITY [13], Back’s action systems [1] and Lamport’s TLA [25]. The state part
corresponds to an iterative program or action system, and the trace part to a behavioural
specification of that program.



The integration of time into the specification language encompasses the following as-
pects:

o The relations between the duration calculus and the specification language are ex-
plored. [17] describes the step from DC to switching circuits which are close to

SLtime‘

e In cooperation with Lyngby we shall evaluate case studies that indicate which timing
properties are needed and how they can be expressed in different existing time calculi.
One such study, a railway crossing, is presented in [36].

o Work at Oxford indicates that timing requirements can be classified into those stating
lower bounds (“waits”) and others stating upper bounds (“speed-ups”). We wish to
investigate whether taking these two aspects separately leads to simpler calculi.

A first version of the timed specification language is proposed in [36].

Design Calculus. A proper integration of time and concurrency into a program design
calculus i1s the most challenging task of Oldenburg. We plan to cope with this task as
follows:

e A transformational approach to the design and verification of concurrent systems
is being developed. [31] shows several ideas in this area along with a detailed case
study.

o The design rules need to establish links between the discrete time calculus and the
continuous real-time models and between global and local timing constraints.

Mechanical support. It appears that the transformational set-up is closely related to
the structure of mechanical reasoning performed in meta-logical systems like LCF, HOL
or LAMBDA. We shall explore this relationship and work on the mechanisation of the
transformational approach to the design of Occam programs.

We are using the LAMBDA system of Abstract Hardware Litd. to implement a transfor-
mational approach. Initially these activities will be performed within a national “BMFT”
research project, called “KORSO” (for “Correct Software”). In KORSO we are implement-
ing a semantics model in LAMBDA which allows the verification of transformation rules
and their mechanical application for the design of Occam-like programs from specifications
[5]. Later we plan to take over this work to ProCoS I for (subsets of) the specification
language and transformation rules used there.

2.4 Compilation — Kiel

In ProCoS1, it was demonstrated, how a compiler for a very simple language could be
specified and implemented in a provably correct manner. In ProCoS1II we concentrate



on compiler development for more powertul languages, including real-time and parallelism.
The work centered on program compilation is essentially done at Kiel University. It is
divided into the following parts:

Programming language design. PL is an imperative language with parallel composi-
tion and communication to reflect concurrency in the controlled systems. Since treatment
of real-time constraints for reactive systems is the overall goal of ProCoS I, PL provides
the means to express assertions on the timed behaviour of programs. It features delay
timing as present in Occam and allows to specify upper bounds for the time spent for the
execution of internal actions. A proposal for the core of PL can be found in [15].

Machine language design. As target language for the compilation, a suitable machine
language is selected. Our starting point is the Transputer instruction set. More abstract
levels of machine language might be investigated to ease theoretical considerations. But
the target language of the compiler will be the machine language of an existing processor
in order to be able to execute generated code on real hardware. The semantics for the
machine language will be formalised in an appropriate style to make correctness proofs for
compiler specifications feasible. An important aspect in the design of the semantics will
be the formalisation of time at the hardware level.

Compiler design. We will develop a compiler for the project language, to enable the full
demonstration of the chosen case studies. The development of this example compiler will
not necessarily be fully proven. Suitable tools will be used to obtain a prototype compiler
as early as possible to support the full investigation of the case studies. As far as possible
in the framework of the project, the prototype compiler will be based on proven correct
specifications. On a more loose basis we will investigate global methods for compiler design
which lead to a high degree of confidence in their correctness.

Verification support. Mechanical verification support is desirable for most correctness
proofs arising in compiler development. The emphasis of ProCoS1I is on timing. The
main effort in proofs for compiler correctness concerns the correctness of the code-generator
specification. Since this essentially depends on the semantic model, a proof support system
is only suitable, if the model can be easily formalised in the system. We will investigate
appropriate tools concerning their applicability. [11, 12] describe how transition systems
that are used for structural operational semantics definitions can be embedded into term
rewriting systems in general and the Larch-based LP proof system in particular.

2.5 Hardware — Oxford

To manage the complexity of large-scale computer systems being developed by industry, a
series or hierarchy of specifications is produced, each containing progressively more detail.
This is known as refinement. Refinement needs both guidelines on how to proceed from a



high level to a low level specification, and rules for verifying that this has been done in a
consistent manner. For hardware design we identify the following major activities:

e Elaborate and coordinate the existing design paradigms.

e Develop a design calculus for sequential (synchronous and perhaps asynchronous)
circuits in the framework of CSP and Duration Calculus.

o Facilitate algebraic transformation at various stages of hardware implementation,
and study the potential use of term rewriting systems and other tools in hardware
design.

e Rephrase the application of refinement calculus on transformations between different
levels of hardware design (e.g., instruction level, register level, gate level, switching
circuit level and analog level).

e Build the link with other available technologies and design calculi (e.g., Huffman
and Zissos’s Sequential Equations, Interface State Graph, Martin’s Compilation and
Ebergen’s Regular Expression).

Activity in this area will be dependent on projects with other sources of funding. Initial
results are reported in [8, 9, 20]. This will continue the work of the currently abutted UK
collaborative safemos project at Oxford [7].

3 Working Group

An integral part of our research plan is the formation of a Working Group of potential
collaborators and industrial partners. We have recently submitted a proposal to the CEC.
We also intend to undertake the organisation of newsletters, distribution lists, seminars,
technical meetings, workshops and an open conference at which the directions of research
can be discussed and the results can be disseminated. We have planned the following
dates:

1993 September 20-23, Technical Meeting, Oldenburg (D)
e 1994 January, Workshop, Copenhagen (DK)

1994 September, Open Conference, Kiel (D)
e 1995 January, Workshop (UK?)
e 1995 August, Technical Meeting (DK?)

The open conference may be held in conjunction with an existing related conference series.
If anyone would like to attend on these occasions or to know more about them, please
contact the ProCoS II project coordinator, Oxford University, to be added to our mailing
list and to obtain further information.



References

[1]

[13]

R.J.R. Back. Refinement calculus, part II: Parallel and reactive programs. In J.W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems —
Models, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science, pages
67-93. Springer-Verlag, 1990.

D. Bjgrner. Trusted computing systems. In Proc. 14th International Conference on Software
FEngineering (ICSE), Melbourne, Australia. North-Holland, May 1992.

D. Bjorner et al. A ProCoS project description: ESPRIT BRA 3104. Bulletin of the EATCS,
39:60-73, 1989.

D. Bjorner, H. Langmaack, and C.A.R. Hoare. ProCoS I final deliverable. ProCoS Techni-
cal Report [ID/DTH DB 13/1], Department of Computer Science, Technical University of
Denmark, DK-2800 Lyngby, Denmark, January 1993.

J. Bohn. Interaktive synthese kommunizierender systeme mit LAMBDA. Bericht, Carl-von-
Ossietzky-Universitat Oldenburg, Germany, February 1993.

J.P. Bowen. From programs to object code using logic and logic programming. In
R. Giegerich and S.L. Graham, editors, Code Generation — Concepts, Tools, Techniques,
Workshops in Computing, pages 173-192. Springer-Verlag, 1992. Proc. International Work-
shop on Code Generation, Dagstuhl, Germany, 20-24 May 1991.

J.P. Bowen, editor. Towards Verified Systems. Real-Time Safety Critical Systems Series.
Elsevier, 1993. In preparation.

J.P. Bowen, B. Buth, He Jifeng, M. Miiller-Olm, E.-R. Olderog, and A.P. Ravn. Provably
correct systems: Tutorial material, Formal Methods Furope 93. ProCoS Technical Report
[ID/DTH APR 20/1], Department of Computer Science, Technical University of Denmark,
DK-2800 Lyngby, Denmark, March 1993.

J.P. Bowen, M. Frinzle, E.-R. Olderog, and A.P. Ravn. Developing correct systems. In Proc.
dth Furomicro Workshop on Real-Time Systems, Oulu, Finland. IEEE Computer Society
Press, 22-24 June 1993. To appear.

B. Buth, K.-H. Buth, M. Frinzle, B. von Karger, Y. Lakhneche, H. Langmaack, and
M. Miiller-Olm. Provably correct compiler development and implementation. In Com-
piler Construction 92, Proc. jth International Conference (CC’92), Paderborn, Germany,

volume 641 of Lecture Notes in Computer Science, pages 141-155. Springer-Verlag, October
1992.

K.-H. Buth. Simulation of transition systems with term rewriting systems. Bericht 9212,
Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Universitit Kiel,
Germany, 1992.

K.-H. Buth. Using SOS definitions in term rewriting proofs. In Ursula Martin and Jeannette
Wing, editors, Proc. First International Workshop on Larch, Workshops in Computing.
Springer-Verlag, 1992. Full version available as Bericht 9214, Institut fiir Informatik und
Praktische Mathematik, Christian-Albrechts-Universitiat Kiel, Germany.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.



[14]
[15]

[16]

[21]

[22]

M. Engel et al. A formal approach to computer systems requirements documentation. In
Hybrid Systems, Lecture Notes in Computer Science. Springer-Verlag, 1993. To appear.

M. Franzle. Proposal for a programming language core for ProCoS II. ProCoS Technical
Report [Kiel MF 11/2], Christian-Albrechts-Universitat Kiel, Germany, March 1993.

D.I. Good and W.D. Young. Mathematical methods for digital system development. In
S. Prehn and W.J. Toetenel, editors, VDM’91, Formal Software Development Methods,
Volume 2: Tutorials, volume 552 of Lecture Notes in Computer Science, pages 406-430.
Springer-Verlag, 1991.

M.R. Hansen and E.-R. Olderog. Constructing circuits from decidable Duration Calculus.
Bericht, Carl-von-Ossietzky-Universitat Oldenburg, Germany, April 1993.

M.R. Hansen and Zhou Chaochen. Semantics and completeness of Duration Calculus. In W-
P. de Roever, editor, Proc. REX’91, Real-Time: Theory in Practice, volume 600 of Lecture
Notes in Computer Science. Springer-Verlag, 1992.

He Jifeng and J.P. Bowen. Time interval semantics and implementation of a real-time
programming language. In Proc. 4th Furomicro Workshop on Real-Time Systems, pages
110-115. IEEE Press, June 1992.

He Jifeng, 1. Page, and J.P. Bowen. Towards a provably correct hardware implementation
of Occam. In G.J. Milne, editor, Proc. IFIP W(G10.2 Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methods (CHARME’93), Arles, France,
Lecture Notes in Computer Science. Springer-Verlag, 24-26 May 1993. To appear.

C.A.R. Hoare. Refinement algebra proves correctness of compiling specifications. In C.C.
Morgan and J.C.P. Woodcock, editors, 3rd Refinement Workshop, Workshops in Computing,
pages 33-48. Springer-Verlag, 1991.

C.A.R. Hoare and He Jifeng. Refinement algebra proves correctness of a compiler. In M. Broy,
editor, Programming and Mathematical Method: International Summer School directed by
F.L. Bauer, M. Broy, E.W. Dijkstra, C.A.R. Hoare, volume 88 of NATO ASI Series F:
Computer and Systems Sciences, pages 245-269. Springer-Verlag, 1992.

C.A.R. Hoare, He Jifeng, J.P. Bowen, and P.K. Pandya. An algebraic approach to verifiable
compiling specification and prototyping of the ProCoS level 0 programming language. In
CEC DG XIII, editor, ESPRIT’90 Conference Proceedings, Brussels, pages 804-818, 1990.

C.A.R. Hoare, He Jifeng, and A.C.A. Sampaio. Normal form approach to compiler design.
Acta Informatica, to appear.

L. Lamport. The temporal logic of actions. Technical Report 79, Digital Systems Research
Center, 130 Lytton Avenue, Palo Alto, California 94301, USA, 25 December 1991.

7. Liu, A.P. Ravn, E.V. Sgrensen, and Zhou Chaochen. A probabilistic Duration Calculus.
In Proc. 2nd Int. Workshop on Responsive Computing Systems, Tokyo, Japan. KDD R & D
Laboratories, October 1992.

J.S. Moore et al. Special issue on system verification. Journal of Automated Reasoning,
5(4):409-530, December 1989.

J.E. Nicholls, S.M. Brien, et al. 7 base standard. ZIP Project Technical Report
ZIP/PRG/92/121, SRC Document: 132, Version 1.0, Oxford University Computing Lab-
oratory, 11 Keble Road, Oxford OX1 3QD, UK, 30 November 1992.



[29]

[30]

[33]

[34]

[35]

[41]

[42]

E-R. Olderog. Towards a design calculus for communicating programs. In J.C.M. Baeten
and J.F. Groote, editors, Proc. CONCUR’91, volume 527 of Lecture Notes in Computer
Science, pages 61-72. Springer-Verlag, 1991.

E-R. Olderog. Interfaces between languages for communicating systems. In W. Kuich, editor,
Automata, Languages and Programming: Proc. 19th International Colloguium (ICALP),
Wien, Austria, July 1992, volume 623 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

E.-R. Olderog and S. Rossig. A case study in transformational design of concurrent systems.
In M.-C. Gaudel and J.-P. Jouannaud, editors, Proc. TAPSOFT’93, volume 668 of Lecture
Notes in Computer Science, pages 90-104. Springer-Verlag, 1993.

I. Page and W. Luk. Compiling Occam into field-programmable gate arrays. In W. Moore and
W. Luk, editors, FPGAs, Ozford Workshop on Field Programmable Logic and Applications,
pages 271-283, 15 Harcourt Way, Abingdon OX14 1NV, UK, 1991. Abingdon EE&CS Books.

A.P. Ravn and H. Rischel. Requirements capture for embedded real-time systems. In Proc.
IMACS-IFAC Symposium on Modelling and Control of Technological Systems (MCTS’91),
volume 2, pages 147-152, 1991.

A.P. Ravn, H. Rischel, and K.M. Hansen. Specifying and verifying requirements of real-time
systems. IEEE Transactions on Software Engineering, SE-19(1):41-55, January 1993.

S. Rossig and M. Schenke. Towards a design calculus for communicating programs. In
S. Prehn and W.J. Toetenel, editors, VDM’91 Formal Software Development Methods, vol-
ume 551 of Lecture Notes in Computer Science, pages 148-163. Springer-Verlag, 1991.

M. Schenke. A timed specification language for concurrent reactive systems. ProCoS Tech-
nical Report Oldenburg MS 6, Carl-von-Ossietzky-Universitit Oldenburg, Germany, March
1993.

J.U. Skakkebak, A.P. Ravn, H. Rischel, and Zhou Chaochen. Specification of embedded
real-time systems. In Proc. jth Furomicro Workshop on Real-Time Systems, pages 116-121.
IEEE Press, June 1992.

E.V. Sgrensen, J. Nordahl, and N.H. Hansen. From CSP models to Markov models. IFEF
Transactions on Software Fngineering, to appear.

Zhou ChaoChen, M.R. Hansen, A.P. Ravn, and H. Rischel. Duration specifications for shared
processors. In J. Vytopil, editor, Proc. Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 571 of Lecture Notes in Computer Science, pages 21-32.
Springer-Verlag, 1991.

Zhou Chaochen, M.R. Hansen, and P. Sestoft. Decidability and undecidability results for
Duration Calculus. In STACS °93: 10th Symposium on Theoretical Aspects of Computer
Science, Wiirzburg, Germany, February 1993, Lecture Notes in Computer Science. Springer-
Verlag, 1993. To appear.

Zhou ChaoChen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269-276, 1991.

Zhou Chaochen, A.P. Ravn, and M.R. Hansen. An extended Duration Calculus for hybrid
systems. In Hybrid Systems, Lecture Notes in Computer Science. Springer-Verlag, 1993. To
appear.



