The general plan
1. Our starting point is the set of ordinals below &.

2. Extending this into a continuum of ordinals and defining addition, multiplication and omega
powers on them. These will be called FOATS ("fractional ordinals at ten").

3. Defining continuous fundamental sequences for regular ordinals. Note: FOATS do not have fundamental
sequences.

4. Using the above to define a backwards-compatible version of the letters up to P, and to define Q.

5. Outlining a companion array notation to facilitate ease of use.

Fractional Ordinals At Ten (FOATSs)
Let F = g9x[0,1). An element of F be called a "Fractional Ordinal At Ten" (FOAT).

Let a€gy, (B,t)EF and x€[0,00). Also, let I = | x| and F = x - . We then define the following operations:

(1) Converting a real number into a FOAT:

RTF(x)=(LF) (result is a FOAT)
(2) Addition of an ordinary ordinal and a FOAT:

a+(B,t) = (a+f,t) (result is a FOAT)
(3) Multipliation of an omega power and a nonnegative real number:

(1) w%x =1-x = RTF(x) (result is a FOAT)

(i) w*x = w%I+FS(w%10F) (result is a FOAT)

(FS(a,x) basically means "the x-th member of the fundamental sequence of a" and it will be defined
in the next section)

(4) Omega powers to FOATSs:

w®BY = wh-10t (result is a FOAT)
(5) Converting a FOAT with no fractional part into an ordinal:
FTO ((,0) =P (result is an ordinal)

Continuous Fundamental Sequences
Let E = £y U {€g}. Then we define a function FS : Ex[0,00) — F as follows:

Let a€E and x€[0,00). As before, let I = L x| and F = x - I . We then define:

(D) If3By: a=pf+wY A f2w! then FS(a,x) = f+FS(w?,x)
(2) FS(w™1x) = w*x

(3) If 3B<ey: a=w-B and x=1 then FS(w%x) = wS@x)

(4) If 3B<ey: a=w-B and x<1 then FS(w%x) = wFTOFS@1)).x
(5) If 0<x<1 then FS(gg,x) = RTF(10%)

(6)  Ifx=1then FS(gp,x) = wfSE x-1)



Defining Letter Notation Up to Q

Now we are ready to define our notation:

(1) Valid forms are one of the following:
(1) [a]x where a€E and x€[0,0)
(i) [(8,£)]10 where (B,t)EF

(2) [1]x=10%

(3) For x<1: [a]x=10%

(4) For x>1: [a+1]x = [a][a+1]x-1

(5) If 3y: a=w-y and x<2 then

alx=[FTO(FS(a,2)+1)]x
alx =[FS(a,x)]10

—

(6) If 3y: a=w-y and x=2 then

(7)  [(BYI10 = [p+1](2-59

(8) Ex=[1]x, Fx = [2]x, Gx = [3]x, Hx = [4]x, Jx = [w]x, Kx = [w+1]x, Lx = [w+2]x,
Mx = [w-2]x, Nx = [w?]x, Px = [w®]x, Qx = [go]x

Note that if we write:

(1) [w'ap+w1-a,_1+..+wai1+ag] as [ay, Ap_1, ... ,a1, Ag)
(2) [(w™aptw™l-a,qt.tw-aitag, t)] as[a,, Ap1, .. ,01, Aott]
(3) [(w"a,+w"1a, 1+..+wkx)] as [a,, dy-1, «,0ke1,X,0, ..., 0]

Then the above definition is backwards-compatible with the previously published array-based definitions.

Associated Array Notation - Extending it to nested arrays
To facilicate calculation and notation, we can write ordinals and FOATS as nested arrays:

(D) The number x is represented by the array 'x".

(2) If A represents a and B represents f§ then:
(1) if w»® > S then 'x (A) B' represents w®"-x+B
(i)  if w®" < Bthen 'x (4) B' represents w®"-B-x

(3) If A represents a then '1 (4), 0' represents w®*

This notation doesn't stand on it's own, but it has the advantage of mimicing the behavior of Bird/Bowers

nested arrays which many of you are comfortable with.

Example
Let's calculate Q2.021, first by using the concise FOAT-based definition and then repeating the calculation

more intuitively:

Q2.021= [€0]2.021
[FS(g0,2.021)]10 (Expansion Rule 6)
[wFS(&0.1.021)]10 (FS Rule 6)
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With some practice, you could do the above calculation much more quickly:

Q2.021= [£0]2.021
= [ "']10 (power tower of int(2.021) w's topped by 10/rc(2.021))
_ [we? 04954—2428652322]10
= [w+1.208369216037]1 ) (101.0495..=11,208... = 101+1.208... » w1+1.208..)
= [we*1-1.61573158948]10 (1002083..= 1,6157..)
= [w®* 1+@@-6+w 1573158948110 (1.61573... » w®*1-1+ w®-6+FS(w®,1.573..))
= [ l+w®-6+w-3+7.424753]10 (1015731-.=37.424... = 3-101+7.424... > w1-3+7.424..)
- [W@* 1+ 6+-3+8] 250424753
= [w@*1+w®-6+0-3+8]3.96205
= [w®* 1+@®-6+w-3+7]3100-96205 (in general [a+1]x = [@]in(x10/()
= [ l+w®-6+w-3+7]39.163

Which can also be written in array notation as [1,6 (1) 3,7]39.163



