Dr. Ing. Dictor Concre, Neutochang		A1	B1	C1	C2
	Equipment	3-Stones-firewood	Ben 2	Charcoal tradit.	Charcoal improved
Calculation of Efficiency and Power			Ben 2 24cm pot		
	Fuel	Firewood	Firewood	Charcoal	Charcoal
		Assumptions	Test 03.02.2015	Assumptions	Assumptions
Quantity Water	kg	6	6	6	6
Start-Temperature T1	°C	25	12	25	25
End-Temperature T2	°C	100	100	100	100
Temperature Difference	K	75	88	75	75
Specific Heat of Liquid Water	kJ/kg/K	4.18	4.18	4.18	4.18
Net Energy for Heat Up from T1 to T2	kJ	1,881	2,207	1,881	1,881
Amount of Vaporized Water	kg	0.100	0.050	0.100	0.100
Specific Heat of Vaporization	kJ/kg	2,260	2,260	2,260	2,260
Heat of Vaporization	kJ	226	113	226	226
Effective Energy E_eff	kJ	2,107	2,320	2,107	2,107
Amount of Consumed Fuel	g	1405	411	351	234
	kg	1.405	0.411	0.351	0.234
Mass Ratio Wood/Charcoal	kg/kg			6.0	6.0
Net Calorific Value Wood (15% Humidity)	kJ/kg	15,000	15,000	15,000	15,000
Net Calorific Value Charcoal	kJ/kg	30,000	30,000	30,000	30,000
Energy Input E_in	kJ	21,070	6,165	10,543	7,022
Remaining Mass of Charcoal	g	0	15	0	0
Remaining Energy E_rest	kJ	0	450	0	0
Consumed Energy E_consumed	kJ	21070	5715	10543	7022
Thermal Efficiency eta	%	10.0%	40.6%	20.0%	30.0%
Heat Up Time	Minute	30.00	24.00	30.00	30.00
Heat Up Time t	S	1800	1440	1800	1800
Effective Thermal Power Q_eff	kW	1.17	1.61	1.17	1.17
Firepower Q_fire	kW	11.71	3.97	5.86	3.90

	Equipment	3-Stones-firewood	Ben 2	Charcoal tradit.	Charcoal improved
			Ben 2 24cm pot		
	Fuel	Firewood	Firewood	Charcoal	Charcoal
Fuel Consumption per Year		Assumptions	Test 03.02.2015	Assumptions	Assumptions
Effective Energy Demand E_eff per Household per Year	MJ/Year	6,000	6,000	6,000	6,000
a) Fuel Consumption per Household per Year	kg/Year	4,000	985	1,001	667
Percentage of Saving f_thermo via Thermos Technique	%	45%	45%	45%	45%
Percentage of Saving f_solar via Solar Technique	%	45%	45%	45%	45%
b) Fuel Consumption including Thermos Technique	kg/Year	2,200	542	550	367
c) Fuel Consumption inluding Thermos and Solar Technique	kg/Year	1,210	298	303	202
Conversion to Consumption of Wood per Household per Year			from short rotation plant.	stems and thick branches	for charcoal prod.
a) Without Thermos- and Solar Technique	kg Wood/Year	4,000	985	6,005	3,999
b) Including Thermos Technique		2,200	542	3,303	2,200
c) Including Thermos- and Solar Technique	kg/Year	1,210	298	1,816	1,210

Saving of Wood Consumption per Year			
a) Without Thermos- and Solar Technique	kg Wood/Year	3,015	2,005
b) Including Thermos Technique	kg Wood/Year	3,458	3,805
c) Including Thermos- and Solar Technique	kg Wood/Year	3,702	4,795
Saving if Transition from Charcoal to Ben Stove and Hay Basket	kg Wood/Year	5,463	
Saving if Transition from Charcoal to Ben, Hay Basket, Solar Cooker	kg Wood/Year	5,707	

Saving of CO2 with Assumption that Biomass is Non Renewably Harvested (f_nrb = 0,85).					
Emission Factor EF Wood (IPCC 2006)	kg CO2/MJ	0.1120	0.1120	0.1120	0.1120
Net Calorific Value NCV of Wood (UNFCCC, default value)	MJ/kg Wood	15	15	15	15
Fraction f_n of non-renewable biomass		0.85	0.85	0.85	0.85
Emission of CO2 per kg of Wood with f_nrb = 0,85	kg CO2/kg Wood	1.428	1.428	1.428	1.428
a) Without Thermos- and Solar Technique	kg CO2/Year		4,305		2,864
b) Including Thermos Technique	kg CO2/Year		4,938		5,434
c) Including Thermos- and Solar Technique	kg CO2/Year		5,286		6,847
Saving if Transition from Charcoal to Ben Stove and Hay Basket	kg CO2/Year		7,801		
Saving if Transition from Charcoal to Ben, Hay Basket, Solar Cooker	kg CO2/Year		8,149		

Calculation about Possible Savings Through Improved Stove, Thermos- and Solar Technique

Calulation of Stove Efficiency	Equipment	3-Stones-firewood	Ben 2	Charcoal tradit.	Charcoal improved
	Fuel	Firewood	Firewood	Charcoal	Charcoal
	Unit	Assumptions	2/3/2015	Assumptions	Assumptions
Amount of Water	kg	6	6	6	6
Rise of Temperature	K	75	88	75	75
Net Energy for Heat Up	kJ	1,881	2,207	1,881	1,881
Amount of Vaporized Water	kg	0.1	0.05	0.1	0.1
Heat of Vaporization	kJ	226	113	226	226
Effective Energy Delivered	kJ	2,107	2,320	2,107	2,107
Amount of Fuel	g	1,405	411	351	234
Energy Used	kJ	21,070	6,165	10,543	7,022
Remaining Amount of Produced Charcoal	g	0	15	0	0
Remaining Energy	kJ	0	450	0	0
Stove Efficiency		10%	41%	20%	30%
			Bailis:	15% 25%	25% 35%

Fuel Consumption per Year	Equipment	3-Stones-firewood	Ben 2	Charcoal tradit.	Charcoal improved
	Fuel	Firewood	Firewood	Charcoal	Charcoal
	Unit	Assumptions	2/3/2015	Assumptions	Assumptions
Net Energy Demand E_eff per Household per Year	MJ/Year	6,000	6,000	6,000	6,000
a) Fuel Consumption B per Household per Year	kg/Year	4,000	985	1,101	667
Percentage of Saving f_thermo via Thermos Technique		45%	45%	45%	45%
Percentage of Saving f_solar via Solar Technique		45%	45%	45%	45%
b) Fuel Consumption including Thermos Technique	kg/Year	2,200	542	550	367
c) Fuel Consumption including Thermos- and Solar Technique	kg/Year	1,210	298	303	202
Conversion to Fuelwood Consumption per Household per Year:			Short rotation plantation	Thick stems and branches for charcoal	
Mass Ration Wood/Charcoal (IPCC default value)	kg/kg			6	6
a) Without Thermos- and Solar Technique	kg Wood/Year	4,000	985	6,005	3,999
b) Including Thermos Technique	kg/Year	2,200	542	3,303	2,200
c) Including Thermos- and Solar Technique	kg/Year	1,210	298	1,816	1,210