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[the Wonoka Formation (33)] and the western
United States [Rainstorm Member, Johnnie
Formation (34)] but chose to equate it with a
postulated Gaskiers-related 8'3C excursion
from circa 580 Ma (35). Instead, our data
indicate that this globally correlated negative
813C excursion is not related to any known
glaciation (36). The duration of this excursion
is unconstrained; however, given that it is
captured within over 100 m of section in
Oman (Fig. 1) combined with approximate
sediment accumulation rates calculated with
our constraints, we suggest a duration of >1
and <10 My.

The Doushantuo and correlative strata
record a fundamental shift from an interval
of large carbon isotopic anomalies corre-
sponding to glacial episodes (750 to 580 Ma)
to an interval of anomalies unrelated to ob-
vious glacial episodes (i.e., the anomalies from
circa 551 and 542 Ma), as well as subsequent
large fluctuations in the lower Cambrian.
These new geochronological data allow us to
calibrate that shift as being synchronous with
the appearance of larger and more complex
metazoans; this suggests possible feedback
relationships between evolutionary innovation
and seawater chemistry (Fig. 2).

Our ages indicate that the Doushantuo
Formation spans more than 90% of the
Ediacaran Period. These constraints are con-
sistent with the upper Doushantuo/Shuram/
Kuibis excursion being broadly coincident
with the first appearance of complex trace
fossils and mollusk-like bilaterian Kimberella
(37), dated as slightly older than 555.1 £ 1.0
Ma (24). The advent of large pelagic bi-
laterians with unidirectional guts would have
increased the flux of organic carbon to the
deep ocean (38). Additionally, the radiation of
algae containing resistant biopolymers in cell
wall and cysts (i.e., Miaohe Biota) and the
advent of biomineralization (Namacalathus
and Cloudina, >549 Ma) would have also
resulted in an increased organic carbon and
carbonate carbon flux (39). These changes
would have resulted in a downward flux of
organic carbon with a possible coupled oxi-
dation of the organic reservoir (38, 39) driving
the negative 8'3C excursion. This feedback
loop would lead to an increase in marine
oxygen levels and stimulate productivity and
inferentially predation. It may be no coinci-
dence that the first reefs inhabited by abundant
weakly calcified and rare fully calcified meta-
zoans appeared at about the same time as the
isotopic anomaly [i.e., before 549 Ma in
Namibia (6, 40)].
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Mortality and Greenhouse Gas
Impacts of Biomass and Petroleum
Energy Futures in Africa

Robert Bailis," Majid Ezzati,?* Daniel M. Kammen'3*

We analyzed the mortality impacts and greenhouse gas (GHG) emissions
produced by household energy use in Africa. Under a business-as-usual (BAU)
scenario, household indoor air pollution will cause an estimated 9.8 million
premature deaths by the year 2030. Gradual and rapid transitions to charcoal
would delay 1.0 million and 2.8 million deaths, respectively; similar transitions
to petroleum fuels would delay 1.3 million and 3.7 million deaths. Cumulative
BAU GHG emissions will be 6.7 billion tons of carbon by 2050, which is 5.6% of
Africa’s total emissions. Large shifts to the use of fossil fuels would reduce
GHG emissions by 1to 10%. Charcoal-intensive future scenarios using current
practices increase emissions by 140 to 190%; the increase can be reduced to 5
to 36% using currently available technologies for sustainable production or
potentially reduced even more with investment in technological innovation.

Biomass fuels (wood, charcoal, dung, and ag-
ricultural residues) are vital to basic welfare
and economic activity in developing nations,
especially in sub-Saharan Africa (SSA), where
they meet more than 90% of household energy

needs in many nations. Combustion of bio-
fuels emits pollutants that currently cause over
1.6 million annual deaths globally (400,000 in
SSA) (7). Because most of these deaths are
among children and women, biomass use is
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directly or indirectly related to multiple Mil-
lennium Development Goals of the United
Nations (UN), including environmental sus-
tainability, reducing child mortality, and
gender equity.

We developed a database of current fuel
use and a range of scenarios of household
energy futures up to 2050 in SSA (Table 1).
Current national-level energy production and
consumption (Fig. 1) were estimated from the
UN Food and Agriculture Organization’s
(FAO’s) forest products database and the
International Energy Agency’s (IEA’s) statis-
tical database of countries not in the Or-
ganisation for Economic Cooperation and
Development (2, 3). FAO records woodfuel
(defined as wood or wood transformed into
charcoal) production and trade from 41 coun-
tries in SSA, including separate estimates for
charcoal. Charcoal is widely used in Africa,
even in countries with large endowments of
fossil fuels, such as Gabon, Angola, and Nige-
ria (2). IEA maintains information on biomass
and fossil fuels used in the residential sectors
of 20 countries in the region and an aggre-
gate estimate for the remaining countries in
the region. Data were analyzed for consist-
ency of each fuel type between FAO and IEA
and for consistency across fuel types from IEA
(4). We estimated that in 2000, households in
SSA consumed nearly 470 million tons of
woodfuels (0.72 tons per capita) in the form of
wood and charcoal. By comparison, FAO
estimates that India and China, with a
combined population nearly 3.5 times larger
than that of SSA, used 340 million tons of
woodfuels in the same year (5).

The fraction of households using each
fuel was derived from nationally representa-
tive household-welfare surveys conducted in
the 1990s and compiled by the World Bank
for 20 countries (4, 6). These nations con-
tained 47% of the region’s urban population
and 63% of its rural population. For countries
not surveyed, we applied population-weighted
estimates from surveyed nations, separately
for rural and urban populations. South Africa
was excluded from the weighted averages,
because it has a distinct pattern of household
fuel consumption. These extrapolations are
consistent with the observed low variability
of fuel-use patterns across the 20 countries
with data, especially for rural areas, which
form 64% of SSA’s population (excluding
South Africa, the fraction of households using
woodfuels varied from 86 to 99% in rural
areas and from 26 to 96% in urban areas in

"Energy and Resources Group, University of California,
Berkeley, CA 94720-3050, USA. 2Harvard School of
Public Health, Boston, MA 02115, USA. *Goldman
School of Public Policy, University of California, Berkeley,
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the 20 countries with data) (6). Overall, 94%
of the African rural population and 73% of
the urban population use woodfuels as their
primary source of energy, mainly in the form
of wood in rural areas and an equal split of
wood and charcoal in urban centers. Most
remaining households use a combination of
kerosene, liquefied petroleum gas (LPG), and,
to a very limited extent, electricity (7).

The scenarios for future household ener-
gy sources and use (Table 1) examined the
role of two factors: (i) household fuel choice
(Fig. 2) and (ii) sustainability of biomass har-
vesting and charcoal production techniques.
Economic growth and energy infrastructure
development have lagged in SSA compared
with other world regions, limiting a large-scale
shift to commercial sources of energy in the
residential sector (&), which we present in the
business-as-usual (BAU) scenario. Further-
more, economic growth and infrastructure ex-
pansion do not automatically create a parallel
and simultaneous shift to commercial energy
for household needs. Even in China, where
rapid economic growth and infrastructure ex-
pansion have contributed to near-universal
access to electricity (9), solid fuel use for cook-
ing and heating among households has per-

[ Wood used for charcoal production
[Wood used directly as firewood

[——INot in region

FZ3No data

[—_10- 0.2 tons per capita
[10.2 - 0.4 tons per capita
[C10.4 - 0.5 tons per capita
0.5 - 0.8 tons per capita
0.8 - 1.0 tons per capita
I 1.0 - 1.5 tons per capita
I > 1.5 tons per capita
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sisted; 80% of Chinese households continue
to rely on biomass (mainly crop residues) and/
or coal as their primary cooking and heating
fuels (10).

In addition to the secular BAU trends, in
which population growth and urbanization
are the main drivers of change in household
fuel use, we examined two additional cate-
gories of scenarios for household fuel choice.
The first group examines a systematic shift
from wood to charcoal (C, charcoal; RC, rapid
charcoal). Charcoal is a popular fuel in many
countries in SSA because it is relatively clean,
safe, affordable, and storable and requires
no expensive equipment to use. The second
group of scenarios envisions large-scale adop-
tion of petroleum-based fossil fuels (kerosene
and LPG), which are currently commercial al-
ternatives to biomass fuels in many mid- and
high-income nations (F, fossil fuel; RF, rapid
fossil fuel) (/7). Like charcoal, kerosene can be
purchased in small quantities and used with
relatively inexpensive equipment. It has a
reasonably well-developed supply chain and
is used throughout the region for lighting, as
well as for cooking in urban areas. In contrast,
LPG must be purchased in relatively large
quantities and requires much more expensive

Fig. 1. Current per-capita biomass production in SSA. The colors show total wood fuel consump-
tion, and the pie charts show the fraction of wood that is used for charcoal, based on multiple
sources. FAO biomass estimates (including charcoal) (3) were roughly consistent with IEA esti-
mates and were used for all countries except Angola, Kenya, South Africa, Sudan, and Zambia (20%
of the region’s population). For these countries, FAO biomass estimates would have been too low to
meet minimal household energy needs when considered with energy use from fossil fuels and other
energy sources reported by IEA (2). In all of these countries except Kenya, IEA estimates were used;
for Kenya, data from a detailed national household fuel consumption study were used (26).
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stoves, both of which are barriers to its use in
the urban poor and rural households. The use
of LPG is currently limited to wealthier urban
families in a small number of countries, with

been substantial efforts to promote LPG use
(6, 9). These characteristics were the basis
for choosing distinct household fuel-use
patterns for rural and urban areas in our

the exception of Senegal, where there have  scenarios.

BAU and BAU-S

Sub-Saharan Africa population
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Fig. 2. Number of people in SSA using each fuel in BAU, charcoal (C and RC), and fossil fuel (F and RF)
scenarios. For C between 2000 and 2050, the absolute number of people using charcoal increases
more than 10-fold, partly driven by population growth and urbanization and partly by a shift to
charcoal. This is a large but empirically realistic shift. For example, between 1980 and 2000, the
number of households using charcoal as a primary source of energy in Kenya increased by about
250%, despite frequent attempts by the Kenyan government to restrict charcoal production (26).
“Other” includes crop residues, dung, and mineral coal. Rural-urban breakdown until 2030 is based
on UN estimates, and after 2030 is based on projections (4, 30).

Fig. 3. Cumulative GHG
emissions from 2000 and
2050 from CO,, CH,, and
N,O converted to CO, equiv-
alent units, weighted by
100-year GWP for each
scenario of household en-
ergy futures. Totals are
disaggregated by emissions
from each fuel. The figure
also shows cumulative emis-

GtC in CO; equivalent units
(100-yr GWP)

RC-S F

Fraction of regional and global

sions as fractions of regjonal e . BAU'i & G5 HcCh : RE
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sions [118 GtC and 917 GtC,
respectively, based on the
median emissions scenario reported in the Special Report on Emissions Scenarios to inform policy
makers during the Intergovernmental Panel on Climate Change’s Third Assessment period (73)].
See fig. S5 for annual emissions from each scenario. The figure presents the sum of emissions of
GHGs targeted by the Kyoto Protocol (KP): CO,, CH,, and N,O. This omits the warming effects of CO,
non-methane hydrocarbons, and aerosols or particulate matter. These nonKP GHGs were included in
the sensitivity analysis, along with sensitivity analysis based on a 20-year GWP (4).

—o—Fraction of cumulaltive
SSA emissions

== Fraction of cumulative
global emissions
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For each biomass-based scenario, we ex-
amined the impacts of sustainably harvested (S)
biomass (4) and charcoal production technology
on greenhouse gas (GHG) emissions (BAU-S,
C-S, and RC-S) (Table 1). Nearly all charcoal in
SSA currently is produced in traditional kilns,
which have suboptimal conversion efficiency
and no emission controls. Technological shifts
in charcoal production include indigenous or
exotic multipurpose tree crops, alternative inputs
such as biomass waste products, and efficient
kilns with emission controls. For each scenario,
we estimated emissions of CO, and non-CO,
GHGs from both production and consumption of
all fuels. Both charcoal and fossil fuels are asso-
ciated with significant upstream (production)
emissions. In contrast, wood has negligible up-
stream emissions. Both upstream and end-use
emissions were converted into CO, equivalent
units using 100-year global warming potential
(GWP) to account for the differential warming
effect (radiative forcing) of each emitted GHG
4, 12-14).

The net GHG emissions from residential
energy use in SSA in 2000 were 79 million
tons of carbon (MtC) (61% from wood, 35%
from charcoal, 3% from kerosene, and 1% from
LPG). In the absence of systematic changes
in fuel-use patterns and in production and
harvesting techniques (BAU scenario), cumu-
lative emissions between 2000 and 2050 will
be an estimated 6.7 GtC. The two fossil fuel-
intensive scenarios (F and RF) have the sec-
ond and third lowest cumulative emissions,
after the BAU fuel scenario with sustainable
harvesting and charcoal production (BAU-S).
The highest estimated cumulative emissions
were from two charcoal-intensive scenarios
with unsustainable biomass harvesting and
traditional inefficient charcoal production
(C and RC) (Fig. 3). However, if these house-
hold fuel scenarios are accompanied by sus-
tainable harvesting and a transition to cleaner
and higher efficiency charcoal production
technologies (C-S and RC-S), emissions will
be reduced by 45 and 66% for gradual and
rapid transitions, respectively.

We also estimated the impacts of future
fuel-use scenarios on the two most common
diseases associated with household fuel use:
mortality from lower respiratory infections
(LRIs, mainly pneumonia) among children
(<5 years of age) and chronic obstructive pul-
monary disease (COPD) among adult wom-
en. In 2000, there were 690,000 LRI deaths
among children and 53,000 COPD deaths
among adult females in SSA (/5). An esti-
mated 51% of child LRI deaths (350,000
deaths) and 63% of adult female COPD deaths
(34,000 deaths) were caused by household use
of wood and charcoal (4, 16). Without sys-
tematic changes in urban and rural fuel-use
patterns, household biomass use will result in
an estimated 8.1 million LRI deaths among
young children and 1.7 million COPD deaths
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of adult women between 2000 and 2030 (50%
of all childhood LRI deaths and 63% of all adult
female COPD deaths in the 30-year interval). Of
these 9.8 million premature deaths, 1.0 and 1.3
million are avoidable with gradual transitions
to charcoal (C) and fossil fuels (F), respec-
tively; 2.8 and 3.7 million are avoidable with
more rapid transitions to the two energy
futures (RC and RF) (77). Eighty-three to
85% of avoidable deaths are in children, and
the remaining are among adult women (Fig. 4).

This integrated assessment of GHG emis-
sions and health impacts of the household
fuel use in SSA, the world’s poorest region
with the lowest per-capita energy consumption
and worst health status, reflects the substantial
disease burden and GHG consequences if cur-
rent land- and energy-management practices
continue. A shift to sustainable biomass har-
vesting without a shift in household fuel-
use patterns can reduce GHG emissions by
36% but will have no health or direct welfare
benefits for the region. Transition to petroleum-
based fuels provides the next largest climate-
change benefits, with substantial reductions
in childhood and adult female mortality (/7).
This transition is already underway among
wealthier urban households in some countries
of the region. However, for many people, this
is not a feasible option over the next 2 to 3
decades. Obstacles include fuel affordability
for individual households, high capital costs
for fuel processing and delivery infrastruc-
ture, and volatility in both price and supply
as a consequence of national energy policies
and international markets.

The sustainable charcoal scenarios pre-
sented here define alternatives for significant
health benefits in SSA and address regional and
global environmental issues. A shift from
firewood to either charcoal or fossil fuels can
reduce indoor air pollution by 90% or more
(18). Therefore, charcoal can capture much of
the health benefits of fossil-fuel use without the

Fig. 4. Estimated mortality for scenar-
ios of household energy futures in SSA.
Diseases included are LRIs among chil-
dren <5 years of age and COPD among
adult women. Estimates account for fore-
casted demographic change (population
growth and aging) and secular trends in
background disease and mortality lev-
els. The observed secular (BAU) decline
in childhood LRI mortality is a result of
factors such as increased coverage and
efficacy of pneumonia case management
using antibiotics; increased awareness
and practice of breastfeeding, which in-
creases child immunity and survival; and

Child LRI and adult female COPD deaths

8x10%

6x10° 4

4x10°

2x10°

economic burden and infrastructure require-
ments (19, 20). In Kenya, the initial cost of a
charcoal stove lasting 1 to 2 years is only $3 to
$5; LPG stoves and gas tanks cost $30 to $50. In
urban centers, where charcoal markets are well
developed and firewood must be purchased, the
operating cost of charcoal stoves per unit of
useful energy delivered is similar to that of
wood and substantially cheaper than fossil fuels
(20). Therefore, a shift to charcoal among SSA
households can be equally as or more cost
effective than some of the commonly cited health
interventions in developing countries (15, 21).
Charcoal is already a preferred fuel among many
consumers and has a well-established production
and marketing network in place in many
countries. Therefore, charcoal resolves the im-
portant concern about “intervention scaling-up”
in sustainable development and health technol-
ogy evaluation.

Widespread charcoal use in Africa as a
health intervention presents major policy and
research challenges and opportunities. Wide-
spread use of charcoal without changes in
technology and land management will lead to
substantially higher GHG emissions (Fig. 3).
Charcoal use has large, though poorly charac-
terized, impacts on forest cover, soil fertility,
and biodiversity. Currently feasible sustainable
practices, similar to past efforts in Thailand
and Brazil (22, 23), can substantially reduce
these emissions. A real opportunity also exists
to develop new harvesting and production
methods, possibly with even fewer environ-
mental impacts than those in the sustainable
scenarios considered here (e.g., charcoal pro-
duction from alternative feedstocks) (24). How-
ever, these advances require investment in
technology R&D and in technology transfer
and dissemination within and between coun-
tries. In addition to technological needs, the
barriers to sustainable charcoal production
are rooted in a lack of coherent energy pol-
icies specifically addressing residential ener-

—BAU — C
— === RC
-=-=-RF
o T T T T )
2000 2005 2010 2015 2020 2025 2030
Year

other secular trends caused by economic and technological factors (29). Secular (BAU) trends in
COPD are upward mainly because of population aging (COPD mortality increases with age). There
has been a slight increase in age-specific COPD mortality rates at older ages, possibly due to small
increases in smoking among women in Africa, and a slight decrease in age-specific rates in middle
ages, possibly due to competing causes of death (mainly human immunodeficiency virus/acquired
immunodeficiency syndrome). Similar directions are seen for lung cancer, another disease affected
by smoking, which is the main driver of secular COPD rates in Africa. See fig. S11 for separate

estimates by disease.

gy needs and in biases toward industrial
energy resources, as well as outdated forest
policies that put control of forest resources in
the hands of centralized agencies, which rarely
recognize energy as an important forest pro-
duct. If these technological, funding, and in-
stitutional challenges are met, transitioning to
sustainable charcoal would create domestic
jobs, boost rural economies, lessen the need
for imported fossil fuels, and save foreign ex-
change. This integration of health outcomes
into energy and resource technologies and
policies offers an opportunity to reduce child
mortality, promote gender equality, and im-
prove environmental sustainability.
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A Late Jurassic Digging
Mammal and Early

Mammalian Diversification
Zhe-Xi Luo® and John R. Wible

A fossil mammal from the Late Jurassic Morrison Formation, Colorado, has
highly specialized teeth similar to those of xenarthran and tubulidentate
placental mammals and different from the generalized insectivorous or
omnivorous dentitions of other Jurassic mammals. It has many forelimb
features specialized for digging, and its lumbar vertebrae show xenarthrous
articulations. Parsimony analysis suggests that this fossil represents a separate
basal mammalian lineage with some dental and vertebral convergences to
those of modern xenarthran placentals, and reveals a previously unknown

ecomorph of early mammals.

The Late Jurassic was a time of rapid diversi-
fication of mammals. Insectivorous eutricono-
dontans, symmetrodontans, and dryolestoids,
and the omnivorous multituberculates domi-
nated the Late Jurassic mammalian faunas of
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Laurasia, displacing several more primitive
mammaliaform lineages (/—3). Most mam-
mals of the Jurassic and Early Cretaceous
with preserved skeletal elements are general-
ized terrestrial mammals (4-7), except doco-
dontans (2). Here, we report a new mammal
with dental specializations like those known
only from early Tertiary palacanodonts and
extant xenarthran and tubulidentate placental
mammals, in addition to numerous fossorial
(digging) skeletal features.

REPORTS

26. Ministry of Energy (Kenya), Study on Kenya's Energy
Demand, Supply and Policy Strategy for Households,
Small Scale Industries and Service Establishments: Final
Report (KAMFOR Company Limited, Nairobi, 2002).

27. E. Boy, N. Bruce, H. Delgado, Environ. Health Perspect.
110, 109 (2002).

28. V. Mishra, X. Dai, K. R. Smith, L. Mika, Ann. Epidemiol.
14, 740 (2004).

29. C. ). L. Murray, A. D. Lopez, in The Global Burden of
Disease, C. J. L. Murray, A. D. Lopez, Eds. (Harvard School
of Public Health on behalf of WHO and World Bank,
Boston, 1996), pp. 325-395.

30. UN, World Population Prospects: The 2002 Revision
(Population Division of the Department of Economic
and Social Affairs of the UN Secretariat, 2004)
available at www.un.org/popin/data.html.

31. M. Ezzati, B. Mbinda, D. Kammen, Environ. Sci. Technol.
34, 578 (2000).

32. K. R. Smith et al., Greenhouse Gases From Small-
Scale Combustion Devices in Developing Countries
Phase lla: Household Stoves in India (Technical Report
No. EPA-600/R-00-052, EPA, Washington, DC, 2000)
available at: www.teriin.org/climate/emission.htm.

33. G. Jones et al., Lancet 362, 65 (2003).

34. This research was supported by the EPA Office of
Atmospheric Programs, the Energy Foundation, and
NIH (grant PO1-AG17625). The authors thank B. H.
Singer for comments on early drafts of this article; K. R.
Smith and D. M. Pennise for discussions on GHG meth-
ods; and R. E. Black, A. D. Lopez, and E. K. Mulholland
for discussions on mortality and mortality projections.

Supporting Online Material
www.sciencemag.org/cgi/content/full/308/5718/98/DC1
Materials and Methods

Figs. S1 to S11

Tables S1 to S7

References

28 October 2004; accepted 10 February 2005
10.1126/science.1106881

Fruitafossor windscheffeli gen. et sp. nov.
(8) is represented by relatively complete lower
jaws (Fig. 1), incomplete cranium, and nearly
40% of the postcranial skeleton, including
complete forelimb and manus (Fig. 2), several
elements of the hindlimb and hindfoot (pes)
(Fig. 3), and most of the thoracic, complete
lumbar and sacral, and some caudal vertebrae.
The new taxon is distinguishable from all
known Mesozoic mammaliaforms in having
tubular and single-rooted molars with open-
ended roots (Fig. 1) and in that the molar
crown lacks enamel. It differs from all known
Mesozoic mammaliaforms in that the posteri-
or opening of the mandibular canal is located
anterior to the pterygoid crest in a broad
meckelian groove. It differs from all Jurassic
mammals (except Hadrocodium) (9) in having
an inflected mandibular angle that is contin-
uous with the pterygoid crest (Fig. 1).
Fruitafossor is also distinguishable from and
more primitive than the well-established and
successively more inclusive hierarchies of
eutherians (/0, 11), the crown therian clade
of eutherians and metatherians (7, 12, 13), the
trechnotherian clade (Zhangheotherium and
crown therians) (/4-17), and the theriiform
clade (multituberculates and trechnotherians)
(18), and is more plesiomorphic (/9, 20) than
each of these clades by many characteristics.
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