The cooking system proposed here is particularly suitable as an aid for people who are in need as a result of catastrophes such as earthquakes or floods. The cooking system consists primarily of an efficient firewood stove, a set of utensils (pot, lid, plates, cups, etc.) and a heat-insulating container, which is also used to package the cooking system. An adapted design of the Ben-Stove is recommended as the stove, with the ash pan being shortened to match the packaging.

For quick help in an emergency, the affected people need to be equipped with an efficient cooking system as fully as possible, because the supply routes are usually destroyed in this situation and are not available for a long time. In order to overcome hunger and the risk of epidemics, it is particularly important that food can be prepared and kept hot immediately and that water can be boiled and kept at a high temperature if possible.

Usually only splintered wood from destroyed trees is available locally as a heat source. This may be used to operate so-called three-stone fires. However, these have the disadvantage that they produce a lot of smoke and other emissions that are harmful to health and cannot be ignited and sustained in rain and wind, or only with great difficulty. Another disadvantage is that they require a lot of fuel because of their poor efficiency and are not safe. In an emergency situation, there may also be a lack of all cooking utensils, from pots to matches. An essential part of the cooking system is the equipment for using the technology of cooking with retained heat (thermos technology). The proposed cooking system can be produced inexpensively in large numbers, stored compactly, easily transported and also operated by inexperienced users. The operation of the cooking system should also be possible under poor environmental conditions.

Fig. 1 shows a longitudinal section of the cooking system in the packaged state. Depicted are: pot 1, stove shell 2, ash pan 3 with grate bars 4, lid 5, plates 7 and cups 8 in the cup stand 9. Additional cooking utensils can be included. The tripod legs, which are screwed to the outside of the stove shell and the pot supports, are also included and are screwed on the shell with wing nuts after unpacking. The insulating container, consisting of the lower part 10a and the upper part 10b, serves as packaging. Both parts are connected by fitting 11.

Expanded plastic (PPE) is recommended as the material for the insulating container. It has low thermal conductivity and is also suitable for operating temperatures in the range of 100 °C. As a shaped body for the packaging, it has a sufficiently high strength. The low specific gravity and the water resistance and waterproofness of the packaging allows the cooking system to be made buoyant. If necessary, additional insulating panels can be attached to the packaging. It is advantageous if the insulating panels are aluminum-coated in order to increase the insulating effect and to prevent insect infestation, etc.

Fig. 2 shows a cross section through the arrangement according to Fig. 1. The insulating container advantageously has a cuboid basic shape. It can be surrounded with a connecting ring 12. The insulating container is shown with indentations at the corners so that the connecting ring can be exposed at the corners and connections can be made with other insulating container parts. Pot handles 13 are also outlined in Fig. 2. For the transport of the cooking systems, the parts of the insulating container are connected at the connecting rings, so that a compact cooking device is provided which can be easily transported and stored and which is quickly ready for use on site. If the complete cooking system for a group of 12 people requires a volume of approximately 0.04 cubic meters, then 300 people can be equipped per cubic meter of cargo space.