



## Solar Energy Based Continuous Cooker

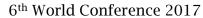
Presented by

### Dr. A. S. Gudekar

On behalf of

### Professor J. B. Joshi




DEPARTMENT OF CHEMICAL ENGINEERING INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI



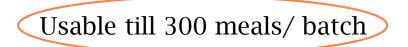
# Batch cooking: Eco-Cooker

- Cooking device developed by ICT and LRI (NGO)
- Available in various sizes of 3.5, 6, 24, 40, 120, and 160 liter
- □ Thermal efficiency: 60 % 70 %
- Working Principles
  - -Reduction in heat loss to the surroundings
  - -Early shut-off of the heat supply
  - -Optimum heating rate (matching heat uptake rate with supply rate from the burner)








# Continuous cooking system

### Large Scale Cooking in India

Hostels, Jails, Industrial Canteens Religious places, Mid-day meal schemes

1000- 100,000 meals/ day

Batch operations limitations/ challenges



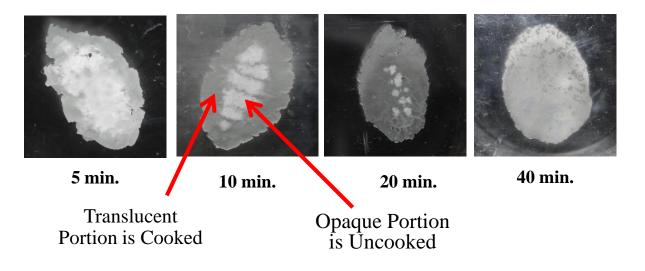
### **Continuous Cooking System concept**

Rice and water are contacted at temperatures between 95 to 100 °C at predetermined residence time.



## Kinetics of Cooking

### Assumptions


- Spherical particle
- Particle size increases as cooking takes place
- Overall rate is controlled by
  - 1) External mass transfer
  - 2) Diffusion through cooked material
  - 3) Chemical reaction



### Kinetics of Cooking

### Degree of Starch Gelatinization

Images for Cooking of Unsoaked Rice at 90°C at different cooking time intervals



### **Rice Cooking**



## Kinetics of Cooking

#### External mass transfer

$$\theta = \left( \left[ R_e^{3} - \frac{\left( R_e^{3} - R_0^{3} \right)}{R_0^{3}} R_c^{3} \right]^{1/3} - R_0 \right) / \left( R_e - R_0 \right)$$

Diffusion through Swollen Cooked Mass

$$\theta = \left\{ \frac{R_c^2 - R_0^2}{2} + \frac{1}{2\left(\frac{R_e^3 - R_0^3}{R_0^3}\right)} \left[ \left(\frac{R_e^3 - (R_e^3 - R_0^3)\left(\frac{R_c}{R_0}\right)^3\right)^{2/3} - (R_0^3)^{2/3} \right] \right\} \right] \left\{ -\frac{R_0^2}{2} + \frac{1}{2\left(\frac{R_e^3 - R_0^3}{R_0^3}\right)^{2/3} - (R_0^3)^{2/3} \right] \right\}$$

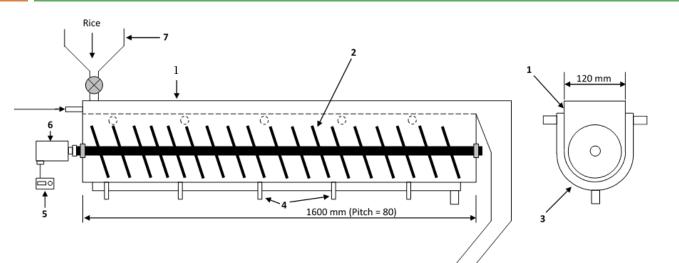
Chemical Reaction Controlled

$$\theta = \left( \left\{ R_e^{3} - (R_e^{3} - R_0^{3}) \left( \frac{R_c}{R_0} \right)^3 \right\}^{1/3} - R_c \right) / R_e$$

Where:  $\theta = t/\tau$ ;  $\tau$  is time required for complete cooking



## Time for complete cooking of Rice


7

 Effect of Temperature on Cooking Time (Juliana et al, 1986; Singhal et al 2012)

| Temperature (°C) | Time (min) |
|------------------|------------|
| 80               | 57.0       |
| 90               | 24.0       |
| 95               | 18.0       |
| 100              | 13.5       |



## Schematic of continuous cooker



- 1. U trough
- 2. Screw conveyor
- 3. Steam jacket
- 4. Sparging nozzles
- 5. VFD
- 6. Motor
- 7. Hopper

#### Cooking trial details

| Parameter            | Unit  | Typical value |
|----------------------|-------|---------------|
| Rice addition        | kg/hr | 5             |
| Water                | kg/hr | 15            |
| Total mass feed rate | kg/hr | 20            |
| Screw rotation speed | rpm   | 1             |
| Residence time       | min   | 20            |
| Length               | m     | 1.6           |
| Width                | m     | 0.12          |

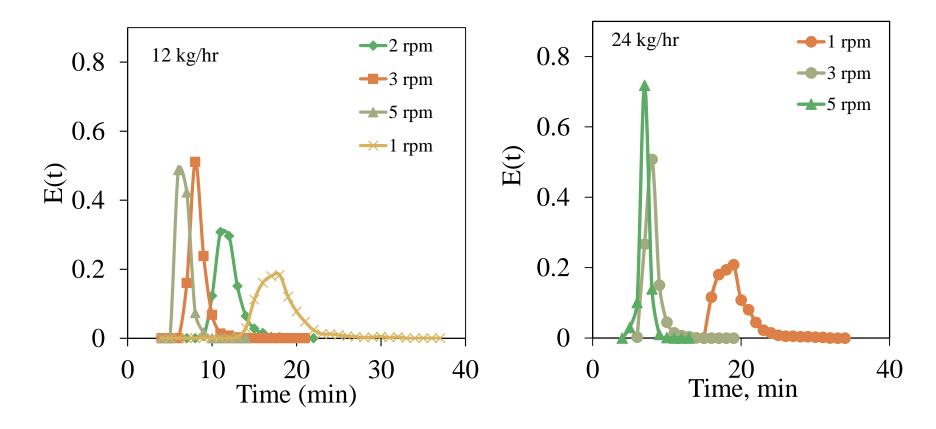


# Hydrodynamic performance

### Liquid phase Axial Mixing

- Water flow rate:
- > Mean residence time:
- > Screw speed:

15, 25, 35 lph 8-24 min 1,2,3,5 rpm


#### Solid phase Axial mixing

| Screw speed:      | 1, 3, 5 rpm  |
|-------------------|--------------|
| » Rice feed rate: | 12, 24 kg/hr |



## Hydrodynamic performance

10



Solid RTD

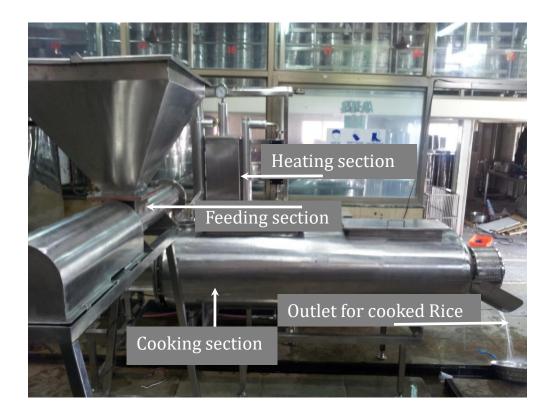


# Solid phase RTD

| Flow rate<br>(kg/hr) | Screw<br>rpm | MRT (min) | $\sigma_d^2$ | Ре     |
|----------------------|--------------|-----------|--------------|--------|
|                      | 1            | 18.20     | 0.0245       | 81.50  |
| 12                   | 3            | 9.18      | 0.0102       | 195.85 |
|                      | 5            | 6.37      | 0.0110       | 181.52 |
|                      | 1            | 18.54     | 0.0161       | 124.11 |
| 24                   | 3            | 8.40      | 0.0157       | 127.74 |
|                      | 5            | 7.30      | 0.0084       | 239.39 |

### **Cooking Experiments**

#### Rice Cooking: 20 min residence time (1 rpm)


| Sr No. | Rice (kg/hr) | Water (lph) | Quality of cooked material | Efficiency |
|--------|--------------|-------------|----------------------------|------------|
| 1      | 5            | 25          | Cooked, free flowing       | 60%        |
| 2      | 5            | 17.5        | Cooked, free flowing       | 61%        |
| 3      | 5            | 12.5        | Cooked, sticky             | 59%        |

#### Dal Cooking : 95 min residence time (0.2 rpm)

| Sr No. | Dal(kg/hr) | Water (lph) | Quality of cooked material | Efficiency |
|--------|------------|-------------|----------------------------|------------|
| 1      | 1          | 5           | Cooked, free flowing       | 58%        |
| 2      | 1          | 3.5         | Cooked, free flowing       | 60%        |
| 3      | 1          | 2           | Cooked, sticky             | 59%        |



# **Continuous Cooking System**



Photograph of Scaled up model (capacity100 kg/hr)

| Parameters              | Unit  |      |
|-------------------------|-------|------|
| Rice addition           | kg/hr | 100  |
| Water                   | kg/hr | 350  |
| Total mass<br>feed rate | kg/hr | 450  |
| Screw rotation speed    | rpm   | 0.5  |
| Residence<br>time       | min   | 20   |
| Length                  | m     | 2    |
| Diameter                | m     | 0.48 |

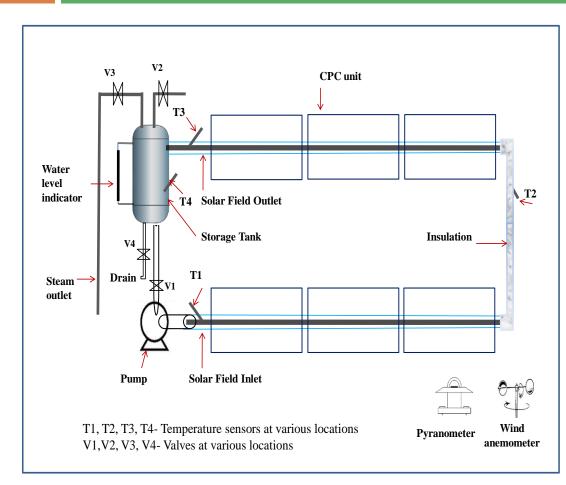


## Techno-Economical Feasibility

- Basis: 50000 meals
  - Once a day
  - LPG cost Rs. 65/-per kg.
  - Number of Meals per day : 50000
  - Rice and Dal Needed : 5000 kg (4 parts rice, 1 part dal)
  - Labor Cost : Rs. 300/- per person per day



## Techno-Economical Feasibility


|     | Parameters                | Unit          | Open-Pan<br>Cooker | Continuous<br>Cooker |
|-----|---------------------------|---------------|--------------------|----------------------|
| 1.  | Total Cooking Time        | hr            | 7.5                | 5.0                  |
| 2.  | Labour requirement        | Persons       | 20                 | 2                    |
| 3.  | Capital Investment        | Rs.           | 1,00,000/-         | 32,00,000/-          |
| 4.  | Labour and Overhead Costs | Rs./day       | 7,000              | 1,600                |
| 5.  | Fuel Required             | kg<br>LPG/day | 560                | 235                  |
| 6.  | Fuel Cost                 | Rs./day       | 36,400/-           | 15275/-              |
| 7.  | Total Operating Cost      | Rs./day       | 43,400/-           | 16,875/-             |
| 8.  | Operating Cost per Annum  | Rs./year      | 86,80,000/-        | 33,75,000/-          |
| 9.  | Annual Savings            | Rs./year      | -                  | 53,05,000/-          |
| 10. | Depreciation              | Rs./year      |                    | 1,60,000/-           |

#### Payback Period: 7 months.



## Integration with Solar Thermal System

16



| Parameters           | Value     | Unit  |
|----------------------|-----------|-------|
| Mounting             | East-West | -     |
| Collector aperture   | 2.0       | m     |
| Collector length     | 3.0       | m     |
| Aperture area        | 6.0       | $m^2$ |
| Total units          | 16        | -     |
| Total collector area | 94.6      | $m^2$ |
| Mirror Area          | 107.5     | $m^2$ |
| Receiver diameter    | 0.048     | m     |
| Concentration ratio  | 12.9      | -     |
| Steam Generation     | 50        | kg/hr |
| Rate                 |           |       |
| Efficiency           | 40        | %     |



## Solar based Cooking System







Thank you

## **Energy Research Group**

Institute of Chemical Technology, Mumbai 400019

Prof. J. B. Joshi jbjoshi@gmail.com



Prof. A. B. Pandit dr.pandit@gmail.com